倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究

王仰雪1,刘庆宽1,2,3,靖洪淼1,2,3,李震1,孙一飞1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 232-239.

PDF(2849 KB)
PDF(2849 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 232-239.
论文

倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究

  • 王仰雪1,刘庆宽1,2,3,靖洪淼1,2,3,李震1,孙一飞1
作者信息 +

Experimental study on the influence of inclined railings on the vortex-induced vibration performance of a streamlined box girder

  • WANG Yangxue1,LIU Qingkuan1,2,3,JING Hongmiao1,2,3,LI Zhen1,SUN Yifei1
Author information +
文章历史 +

摘要

涡激振动是大跨度桥梁在低风速时易发生的具有强迫和自激双重性质的自限幅风致振动现象,桥面栏杆因其会改变主梁的气动外形而对涡激振动有显著的影响。为了揭示倾斜栏杆对流线型箱梁涡激振动特性的影响及作用机理,采用节段模型风洞测压和测振试验方法,研究不同倾斜角度栏杆对流线型箱梁涡振特性和表面风压的影响,分析了主梁涡振响应、平均和脉动风压分布、局部气动力与涡激力的相关性和贡献系数以及相位差。结果表明:当人行道栏杆内倾时,倾斜角度越大,抑振效果越显著。当人行道栏杆外倾时,外倾10°的主梁抑振效果优于外倾20°的主梁;相比常规的垂直栏杆,栏杆向内倾斜20°和向外倾斜10°有显著抑振效果的原因主要有:主梁上、下表面的脉动风压系数大幅度较低,最多降低了61.54%;在主梁上表面大部分区域,局部气动力与涡激力的相关性系数大幅降低,平均降低了约33.33%;在上表面上游前部和下游尾部及下表面大部分区域的涡振贡献系数均有不同程度的降低;上、下表面各测点间相位差变化的连续性被打断,相邻测点间的相位差更加离散化。

Abstract

Vortex-induced vibration (VIV) is a kind of wind-induced self-limiting vibration with both forced and self-excited characteristics, which is easy to occur in long-span bridges at low wind speeds. The railings, subsidiary facilities of the bridge deck, have a significant influence on the VIV performance, as a results of its variation in aerodynamic shape of the main girder. To reveal the influence and mechanism of inclined railings on VIV performance of streamlined box girder. The pressure distribution and displacement respond of sectional model were carried out by wind tunnel tests. The VIV response, mean and fluctuating wind pressure coefficient distribution were comprehensively studied. Meanwhile, correlation and contribution coefficients, as well as phase difference between local aerodynamic force and vortex-excited force also were comprehensively studied. The results indicate that when the sidewalk railing inclined inward, the greater the inclined angle, the more obvious the vibration suppression effect. When the sidewalk railing is inclined outward, the vibration suppression effect of the main beam with 10° inclined outward is better than that of the main beam with 20° inclined outward; compared with the conventional vertical railings, the main reasons why the railings inclined 20° inward and 10° outward have obvious vibration suppression effect are as follows: the fluctuating wind pressure coefficients on the upper and lower surfaces of main girders are considerably lower, decreasing by 61.54 % in the most obvious regions; the correlation coefficient between local aerodynamic force and vortex-excited force is reduced by about 33.33% on average, in most areas of the upper surface of the main beam.; the vortex-induced contribution coefficients are reduced to varying degrees in the upstream front, downstream tail and most areas of the lower surface; the continuity of the phase differences between the measurement points are interrupted, and the phase differences become scattered.

关键词

涡激振动 / 倾斜栏杆 / 风洞试验 / 流线型箱梁 / 气动力特性

Key words

vortex-induced vibration / inclined railing / wind tunnel test / streamline box girder / aerodynamic characteristics

引用本文

导出引用
王仰雪1,刘庆宽1,2,3,靖洪淼1,2,3,李震1,孙一飞1. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究[J]. 振动与冲击, 2023, 42(6): 232-239
WANG Yangxue1,LIU Qingkuan1,2,3,JING Hongmiao1,2,3,LI Zhen1,SUN Yifei1. Experimental study on the influence of inclined railings on the vortex-induced vibration performance of a streamlined box girder[J]. Journal of Vibration and Shock, 2023, 42(6): 232-239

参考文献

[1] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2015.
CHEN Zheng-qing. Bridge Wind Engineering[M]. Beijing: China Communications Press, 2015.
[2] LARSEN A, ESDAHL S, ANDERSEN J E, et al. Storebælt suspension bridge–vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2-3): 283-296.
[3] BATTISTA R C, PFEIL M S. Reduction of vortex-induced oscillations of Rio-Niteroi bridge by dynamic control devices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3): 273-288.
[4] HUI L, LAIMA S, OU J, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33(6): 1894-1907.
[5] GE Y J, ZHAO L, CAO J X. Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104866.
[6] NAGAO F, UTSUNOMIYA H, YOSHIOKA E, et al. Effects of handrails on separated shear flow and vortex-induced oscillation [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 69.
[7] 李永乐, 侯光阳, 向活跃, 等. 大跨度悬索桥钢箱主梁涡振性能优化风洞试验研究[J]. 空气动力学学报, 2011, 29(06): 702-708.
Li Yong-le, Hou Guang-yang, Xiang Huo-Yue, et al. Wind tunnel test study on vortex vibration performance optimization of steel box girder of long-span suspension bridge[J]. Acta Aerodynamica Sinica, 2011, 29(06): 702-708.
[8] 管青海, 李加武, 胡兆同, 等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击, 2014, 33(03): 150-6.
Guan Qing-hai, Li Jia-wu, Hu Zhao-tong, et al. Effects of railings on vortex-induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(03): 150-156.
[9] 张建, 郑史雄, 唐煜, 等. 基于节段模型试验的悬索桥涡振性能优化研究[J]. 实验流体力学, 2015, 29(02): 48-54.
ZHANG Jian, ZHENG Shi-xiong, TANG Yu, et al. Research on optimizing vortex-induced vibration performance for suspension bridge based on section model test [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(02): 48-54.
[10] 王骑, 廖海黎, 李明水, 等. 流线型箱梁气动外形对桥梁颤振和涡振的影响[J]. 公路交通科技, 2012, 29(08): 44-50+70.
WANG Qi, LIAO Hai-li, LI Ming-shui, et al, Influence of aerodynamic shape of streamline box girder flutter and vortex-induced vibration[J]. Journal of Highway and Transportation Research and Development, 2012, 29(08): 44-50+70.
[11] 李明, 孙延国, 李明水, 等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报, 2018, 53(04): 712-719.
LI Ming, SUN Yan-guo, LI Ming-shui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research[J]. Journal of Southwest Jiaotong University, 2018, 53(04): 712-719.
[12] 崔欣, 王慧贤, 管青海, 等. 栏杆透风率对主梁涡振特性影响的风洞试验[J]. 长安大学学报(自然科学版), 2018, 38(3): 9.
Cui Xin, Wang Hui-xian, Guan Qing-hai, et al. Wind tunnel experimental on influence of railing ventilation rate on characteristics of vortex-induced vibration of main girder[J]. Journal of Chang’an University (Natural Science Edition), 2018, 38(3): 9.
[13] 张天翼, 孙延国, 李明水, 等. 宽幅双箱叠合梁涡振性能及抑振措施试验研究[J]. 中国公路学报, 2019, 32(10): 9.
Zhang Tian-yi, Sun Yan-guo, Li Ming-shui, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a wide-width[J]. China Journal of Highway and Transport, 2019, 32(10): 9.
[14] 潘韬, 肖海珠, 赵林, 葛耀君. 大跨度桥梁超宽分体三箱梁抗风性能及控制措施研究[J]. 桥梁建设, 2020, 50(S2): 29-35.
PAN Tao, XIAO Hai-zhu, ZHAO Lin, GE Yao-jun. Study of wind-resistant performance and control measures for very wide girder with three separated boxes in long-span bridge[J]. Bridge Construction, 2020, 50(S2): 29-35.
[15] 张国强. 栏杆构造对Π型桥梁断面涡激振动的影响研究[D]. 长安大学, 2015.
Zhang Guo-qiang. Research on influence of handrail structures of the π bridge section on vortex-induced vibration[D]. Chang’an University, 2015.
[16] 钱国伟, 曹丰产, 葛耀君. Π型叠合梁斜拉桥涡振性能及气动控制措施研究[J]. 振动与冲击, 2015, 34(2): 6.
QIAN Guo-wei, CAO Feng-chan, GE Yao-jun. Vortex-Induced vibration performance of a cable-stayed bridge with π shaped composite deck ad its aerodynamic control measures[J]. Journal of Vibration and Shock, 2015, 34(2): 6.
[17] 李春光, 张记, 樊永波, 等. 宽幅流线型钢箱梁涡振性能气动优化措施研究[J]. 桥梁建设, 2017, 47(1): 6.
Li Chun-guang, Zhang Ji, Fan Yong-bo, et al. Study of aerodynamic optimization measures for vortex-induced vibration performance of wide streamlined steel box girder[J]. Bridge Construction, 2017, 47(1): 6.
[18] 许福友, 林志兴, 李永宁, 等. 气动措施抑制桥梁涡振机理研究[J]. 振动与冲击, 2010, 29(1): 73-76.
XU Fu-you, LIN Zhi-xing, LI Yong-ning, et al. Vortex resonance depression mechanism of a bridge deck with aerodynamic measures[J]. Journal of Vibration and Shock, 2010, 29(1): 73-76.
[19] 胡传新, 赵林, 周志勇, 等. 流线型闭口箱梁抑流板抑制涡振机理研究[J]. 振动工程学报, 2020, 33(1): 11.
Hu Chuan-xin, Zhao Lin, Zhou Zhi-yong, et al. Study on vortex suppression mechanism of streamlined closed box girder flow suppression plate[J]. Journal of Vibration Engineering, 2020, 33(1): 11.
[20] HU C X, ZHAO L, GE Y J. Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 314-331.
[21] Xin D, Zhan J, Zhang H, et al. Control of vortex-induced vibration of a long-span bridge by inclined railings[J]. Journal of Bridge Engineering, 2021, 26(12): 04021093.
[22] 李永乐, 陈星宇, 汪斌, 等. 扁平箱梁涡激共振阻塞效应及振幅修正[J]. 工程力学, 2018, 35(11): 45-52, 78.
LI Yong-le, CHEN Xing-yu, WANG Bin, et al. Blockage-effects and amplitude conversion of vortex-induced vibration for flat-box girder[J]. Engineering Mechanics, 2018, 35(11): 45-52, 78.
[23] 郑云飞, 刘庆宽, 马文勇, 等. 端板对二维矩形风洞试验模型气动特性的影响[J]. 实验流体力学, 2017, 31(3): 38-45.
ZHENG Yun-fei, LIU Qing-kuan, MA Wen-yong, et al. Effects of end plates on aerodynamic force of rectangular prisms in wind tunnel test. [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 38-45.
[24] 白桦, 回城玉, 刘健新. 模型长宽比与二元端板对桥梁节段模型风洞试验影响研究[J]. 世界桥梁, 2018, 46(2): 52-57.
BAI Hua, HUI Cheng-yu, LIU Jian-xin. Study on the influence of the length width ratio of the model and the binary end plate on the wind tunnel test of the bridge section model [J]. World Bridges, 2018, 46 (2): 52−57.
[25] JTG/T 3360-01-2018, 公路桥梁抗风设计规范[S]. 北京:人民交通出版社, 2018.
JTG/T 3360-01-2018, Wind-resistant design specification for highway bridge[S]. Beijing: China Communications Press, 2018.
[26] 孟晓亮, 郭震山, 丁泉顺, 等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响[J]. 工程力学, 2011, 28(增刊 I): 184-188.
MENG Xiao-liang, GUO Zhen-shan, DING Quan-shun, et al. Influence of wind fairing angle on vortex-induced vibrations and flutter performances of closed and semi-closed box decks[J]. Engineering Mechanics, 2011, 28(S1): 184-18.

PDF(2849 KB)

Accesses

Citation

Detail

段落导航
相关文章

/