锥盘形超声聚能器的耦合振动特性与优化设计

徐洁1,臧渡洋2,王国章1,林基艳1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 263-271.

PDF(1830 KB)
PDF(1830 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 263-271.
论文

锥盘形超声聚能器的耦合振动特性与优化设计

  • 徐洁1,臧渡洋2,王国章1,林基艳1
作者信息 +

Coupled vibration characteristics and optimization design of a conical disc ultrasonic concentrator

  • XU Jie1, ZANG Duyang2, WANG Guozhang1, LIN Jiyan1
Author information +
文章历史 +

摘要

超声聚能器具有放大振幅、匹配声阻抗、提高声能量传输效率的作用,盘形聚能器与压电圆管组合能够扩大声能量的辐射范围。采用传统的一维理论对盘形聚能器振动的分析,往往忽略了高度对振动的影响。为了获得符合盘形聚能器实际振动的解析理论,本文以结构简单且易加工的锥盘形超声聚能器为研究对象,利用等效弹性法分析了高度与半径尺寸接近的聚能器的径、纵向耦合振动。通过引入机械耦合系数,推导得到了聚能器耦合振动的机电等效电路、共振频率方程组和径向位移放大倍数。进一步分析了聚能器机械耦合系数、共振频率和径向位移放大倍数与几何尺寸的依赖关系。利用有限元法对聚能器的耦合振动模态进行了仿真,理论计算与模拟结果一致,验证了理论推导的正确性。振动特性与优化结论的获得为盘形聚能器的工程应用提供了理论依据,为径向复合换能器的振动分析奠定了研究基础。

Abstract

The disc ultrasonic concentrator combines with the piezoelectric tube to achieve the large radiation scope. Traditional research on the vibration of the ultrasonic concentrator is based on the one-dimensional theory which ignored the effect of height on vibration. Whereas, the actual vibration of the disc ultrasonic concentrator is the coupling of radial and longitudinal vibration. The object of the analysis is the conical disc ultrasonic concentrator because of the simple structure and easy process, which the diameter is close to the longitudinal dimension. The equivalent elasticity method is used and the mechanical coupling coefficient is introduced to analyze coupled vibration of this concentrator. The electromechanical equivalent circuit, the resonance frequency equations and the radial displacement amplification of the ultrasonic concentrator are derived. Moreover, the dependences between the coupling coefficient, the resonance frequency, radial displacement magnification and geometric size are analyzed. The coupled vibration modes of the ultrasonic concentrator are simulated and the numerical resonance frequencies are obtained from the finite element analysis. The theoretical analyses are consistent with the numerical results, which verifies the theoretical derivation. The conclusion provides the theoretical research basis for the engineering application for the ultrasonic concentrator and the radial composite transducers.

关键词

超声聚能器 / 耦合振动 / 等效弹性法 / 共振频率

Key words

ultrasonic concentrator / coupled vibration / equivalent elasticity method / resonance frequency

引用本文

导出引用
徐洁1,臧渡洋2,王国章1,林基艳1. 锥盘形超声聚能器的耦合振动特性与优化设计[J]. 振动与冲击, 2023, 42(6): 263-271
XU Jie1, ZANG Duyang2, WANG Guozhang1, LIN Jiyan1. Coupled vibration characteristics and optimization design of a conical disc ultrasonic concentrator[J]. Journal of Vibration and Shock, 2023, 42(6): 263-271

参考文献

[1] Richard James Wood, Audrey Bertin, Judy Lee, et al. The application of flow to an ultrasonic horn system: Phenol degradation and sonoluminescence [J]. Ultrasonics Sonochemistry, 2021, 71: 105373(1-7).
[2] Teruyuki Kozuka1, Shin-ichi Hatanaka, Takuya Yoshimoto, et al. Evaluation of the sound field in ultrasonic atomization using a horn [J]. Japanese Journal of Applied Physics, 2020, 59(SK): SKKD16(1-4).
[3] 王晨青,马建敏. 大功率夹心式压电换能器结构参数计算分析及设计[J]. 振动与冲击, 2021, 40(4): 130-137.
WANG Chenqing, MA Jianmin. Design and structural parameters calculation analysis of a high power sandwich [J]. Journal of vibration and shock, 2021, 40(4): 130-137.
[4] 潘炜庭. 超声波聚能器的理论、设计和应用[J]. 物理,1961, 1: 16-29.
PAN Weiting. Theory, design and application of ultrasonic concentrator [J]. Physics, 1961, 1: 16-29.
[5] 张巧丽, 张建富, 冯平法, 等. 斜槽式超声变幅杆纵扭特性研究[J]. 振动与冲击,2019, 38(10): 58-64.
ZHANG Qiaoli, ZHANG Jianfu, FENG Pingfa, et al. Characteristics of the longitudinal-torsional vibration of an ultrasonic horn with slanting slots [J]. Journal of vibration and shock, 2019, 38(10): 58-64.
[6] Mehran Afshari, Behrooz Arezoo. Optimal design and experimental validation of ultrasonic wide blade horn [J]. Applied Acoustics, 2021, 182: 108254(1-15).
[7] Shuyu Lin, Hao Guo, Jie Xu. Actively adjustable step-type ultrasonic horns in longitudinal vibration [J]. Journal of Sound and Vibration, 2018, 419(1): 367-379.
[8] Junhao Ouyang, Zhongjun Qiu, Yuxuan Zhang. Design and development of two-dimensional ultrasonic horn with B-spline curve based on orthogonal method [J]. Ultrasonics, 2022, 123: 106713(1-13).
[9] 周辉林, 张建富, 冯平法, 等. 一种锥形定位节面变幅杆结构优化设计研究[J]. 振动与冲击,2020, 39(6): 111-116.
ZHOU Huilin, ZHANG Jianfu, FENG Pingfa, et al. Structural optimization design of a horn with a tapered locating nodal surface [J]. Journal of vibration and shock, 2020, 39(6): 111-116.
[10] 唐军, 赵波. 单激励纵扭复合超声铣削系统研究[J]. 振动与冲击,2015, 34(6): 57-61.
TANG Jun, ZHAO Bo. A new longitudinal-torsional composite ultrasonic milling system with a single excitation [J]. Journal of vibration and shock, 2015, 34(6): 57-61.
[11] 汪承灏. 盘型聚能器设计理论[J]. 声学学报,1979.11(4): 279-287.
WANG Chenhao. Design theory of disk ultrasonic concentrator [J]. ACTA ACUSTICA, 1979, 11(4): 279-287.
[12] Ata Meshkinzar, Ahmed M Al-Jumaily. Vibration and acoustic radiation characteristics of cylindrical piezoelectric transducers with circumferential steps [J]. Journal of Sound and Vibration, 2021, 511: 116346(1-16).
[13] 张超, 董世民, 刘天明, 等. 压电陶瓷复合超声换能器径向振动特性的仿真研究[J]. 振动与冲击,2020, 39(21): 217-240.
ZHANG Chao, DONG Shimin, LIU Tianming, et al. Simulation of radial vibration characteristics of piezoelectric [J]. Journal of vibration and shock, 2020, 39(21): 217-240.
[14] 林书玉, 张福成. 大尺寸矩形断面超声变幅杆固有频率的研究[J]. 声学学报,1992, 17(6): 451-455.
LIN Shuyu, ZHANG Fucheng. A study on the resonant frequency of ultrasonic horns with large rectangular cross-section [J]. ACTA ACUSTICA, 1992, 17(6): 451-455.
[15] Lokesh Kumar Patel, Aswani Kumar Singh, Varun Sharma, et al. Analysis of a hybrid ultrasonic horn profile using finite element analysis [J]. Materials Today: Proceedings, 2021, 41(4): 772-779.
[16] 贺西平, 张海岛. 单端输入多端输出的纵振动转换体的研究[J]. 中国科学: 物理学 力学 天文学,2016, 46(3): 034301(1-9).
HE Xiping, ZHANG Haidao. Investigation of a converter of longitudinal vibration with single-input and multi-outputs [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(3): 034301(1-9).
[17] 潘巧生, 刘永斌, 贺良国, 等. 一种大振幅超声变幅杆设计[J]. 振动与冲击,2014, 33(9): 1-6.
PAN Qiaosheng, LIU Yongbin, HE Liangguo, et al. Design of an ultrasonic horn with high amplitude of longitudinal vibration [J]. Journal of vibration and shock, 2014, 33(9): 1-6.
[18] 刘世清, 苏超, 姚晔. n次幂变厚度环形超声聚能器径向振动特性[J]. 上海交通大学学报,2011, 45(6): 940-944.
LIU Shi-qing, SU Chao, YAO Ye. Radial Vibration Characteristics of an Annular Ultrasonic Concentrator with n-th Power Thickness Variations [J]. JOURNAL OF SHANGHAI JIAO TONG UNIVERSITY, 2011, 45(6): 940-944.
[19] 许龙, 李伟东. 幂函数型环形聚能器径向振动的等效电路[J]. 声学学报,2019, 44(5): 826-833.
XU Long, LI Weidong. The equivalent circuit of the annular plate concentrator with power function cross-section in radial vibration [J]. ACTA ACUSTICA, 2019, 44(5): 826-833.
[20] 王晓宇, 林书玉. 锥形剖面径向复合超声换能器的机电等效电路[J]. 声学学报,2021, 46(2): 270-280.
WANG Xiaoyu, LIN Shuyu. Electromechanical equivalent circuit of conical section radial composite ultrasonic transducer [J]. ACTA ACUSTICA, 2021, 46(2): 270-280.
[21] Jie Xu, Shuyu Lin. Electromechanical equivalent circuit of the radially polarized cylindrical piezoelectric transducer in coupled vibration [J]. The Journal of the Acoustical Society of America, 2019, 145(3): 1303-1312.
[22] Jie Xu, Shuyu Lin. Analysis on the three-dimensional coupled vibration of composite cylindrical piezoelectric transducers [J]. The Journal of the Acoustical Society of America, 2018, 143(2): 1206-1213.

PDF(1830 KB)

391

Accesses

0

Citation

Detail

段落导航
相关文章

/