静水压状态下深部岩石动态压缩力学行为及能量耗散特征试验研究

方士正1,李炜煜2,杨阳1,陈程1,许鹏3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 280-288.

PDF(2079 KB)
PDF(2079 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 280-288.
论文

静水压状态下深部岩石动态压缩力学行为及能量耗散特征试验研究

  • 方士正1,李炜煜2,杨阳1,陈程1,许鹏3
作者信息 +

Experimental study on the dynamic mechanical behavior and energy dissipation characteristics of deep rock under coupled impact loading and hydrostatic pre-stress

  • FANG Shizheng1, LI Weiyu2, YANG Yang1, CHEN Cheng1, XU Peng3
Author information +
文章历史 +

摘要

以深部岩石为研究对象,利用分离式霍普金森杆(SHPB)实验系统,开展静水压力作用下深部岩石的动力学测试,分析了静水压、冲击气压大小对岩石动态强度、耗散能的影响规律,并在此基础上分析了岩石的破坏特征。通过试验结果发现,岩石动态强度表现出显著的率效应特性,随着冲击气压的增加而增大,呈现出线性正相关关系;岩石动态强度随着静水压力的增加呈非线性增加,采用二项式拟合后发现具有较好的相关性;通过对岩石耗散能分析发现,当岩石所处静水压力相同时,岩石的能量吸收率随着冲击气压的增加而提高;相同冲击气压情况下,岩石的能量吸收率随静水压的增加而减小,表明静水压力对岩石变形具有约束作用;最后,对岩石的表观破坏形态分析发现,低静水压时岩石破坏以剪切裂纹为主,随着静水压的增加,岩石中同时存在剪切裂纹和环向裂纹。本文的研究成果可为深部岩石工程建设提供动力学基础参数,具有一定的参考意义。

Abstract

With the development of deep rock engineering, the mechanical response of rock under in-situ stress needs to be studied. In this study, the dynamic characteristics of deep rock under hydrostatic pre-stress is carried out by using the split Hopkinson pressure bar (SHPB) experimental system. The effects of hydrostatic pre-stress and dynamic load rate on rock dynamic strength and dissipated energy are analyzed, and the rock failure characteristics are also studied. Results show that the dynamic strength of rock shows a significant rate effect, which increases with the increase of impact air pressure, showing a linear positive correlation; and it will increase nonlinearly with the increase of hydrostatic pre-stress, and has a well correlation after binomial fitting. As to energy evolution, it is found that the energy absorption proportion of rock increases with the increase of impact air pressure, and the hydrostatic pre-stress has an opposite effect on the rock energy absorption proportion, which reflects the constraint effect of hydrostatic pre-stress on rock deformation. Finally, the rock apparent failure mode is analyzed. It is found that the rock failure is mainly controlled by shear cracks at low hydrostatic pre-stress. With the increase of hydrostatic pre-stress, shear crack and circular crack appear simultaneously in the sample. The research results can provide basic parameters for deep rock engineering construction.

关键词

静水压 / 深部 / SHPB / 动态强度 / 能量耗散

Key words

Hydrostatic pre-stress / Deep / split Hopkinson pressure bar (SHPB) / Dynamic strength / Energy dissipation

引用本文

导出引用
方士正1,李炜煜2,杨阳1,陈程1,许鹏3. 静水压状态下深部岩石动态压缩力学行为及能量耗散特征试验研究[J]. 振动与冲击, 2023, 42(6): 280-288
FANG Shizheng1, LI Weiyu2, YANG Yang1, CHEN Cheng1, XU Peng3. Experimental study on the dynamic mechanical behavior and energy dissipation characteristics of deep rock under coupled impact loading and hydrostatic pre-stress[J]. Journal of Vibration and Shock, 2023, 42(6): 280-288

参考文献

[1] 谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报, 2019, 44(05): 1283-1305.
Xie H P, Research review of the state key research development program of China: Deep rock mechanics and miningtheory. Journal of China Coal Society, 2019, 44(5): 1283-1305.
[2] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究. 岩石力学与工程学报, 2005(16):2803-2813.
He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chinese Journal of Rock Mechanics and Engineering. 2005(16): 2803-2813.
[3] 周小平, 钱七虎. 深埋巷道分区破裂化机制. 岩石力学与工程学报, 2007. 26(5): 877-885.
Zhou X P, Qian Q H. Zonal fracturing mechanism in deep tunnel. Chinese Journal of Rock Mechanics and Engineering. 2007. 26(5): 877-885.
[4] 张殿振, 张传恕, 庄国华, 等. 孙村矿深井主要生产系统改造技术方案研究.煤炭科学技术,2004(09):1-4.
Zhang D Z, Zhang C S, Zhuang G H, et al. Study on mine reconstruction technology scheme for main production system in Suncun mine. Coal Science and Technology. 2004(09): 1-4.
[5] 戴华阳, 廖孟光, 孟宪营, 等. 峰峰矿区九龙矿水库下采煤安全性分析. 煤炭学报, 2014, 39(S2): 295-300.
Dai H Y, Liao M G, Meng X Y, et al. Analysis of the security of mining under the reservoir in Jiulong Coal Mine of Fengfeng mining area. Journal of China Coal Society, 2014, 39( S2) : 295-300.
[6] 郭志强. 秦岭终南山特长公路隧道岩爆特征与施工对策. 现代隧道技术, 2003(06): 58-62.
Guo Z Q. Rock bursts and countermeasures in Zhongnanshan highway tunnel. Modern Tunnelling Technology. 2003(06): 58-62.
[7] 陈文华, 黄火林, 马鹏. 超高应力作用下锦屏二级水电站深部岩体变形特性试验研究. 岩石力学与工程学报, 2015, 34(S2): 3930–3935.
Chen W H, Huang H L, Ma P. Test study of deformation characteristics of deep rock mass in jinping ii hydropower station under ultra-high pressure. Chinese Journal of Rock Mechanics and Engineering. 2015,34(S2): 3930–3935.
[8] 田四明, 王伟, 唐国荣, 等. 川藏铁路隧道工程重大不良地质应对方案探讨. 隧道建设(中英文), 2021, 41(05): 697-712.
Tian S M, Wang W, Tang G R, et al. Major Adverse Geological Response Plan of Sichuan-Tibet Railway Tunnel Project. Tunnel Construction. 2021, 41(05): 697-712.
[9] E T Brown, E Hoek. Trends in relationships between measured in-situ, stresses and depth. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215.
[10] 康红普, 伊丙鼎, 高富强, 等. 中国煤矿井下地应力数据库及地应力分布规律. 煤炭学报, 2019, 44( 1) : 23-33.
Kang H H,Yi B D, Gao F Q, et al. Database and characteristics of underground in-situ stress distribution in Chinese coal mines. Journal of China Coal Society, 2019, 44( 1): 23-33.
[11] 谢和平, 李存宝, 高明忠, 等. 深部原位岩石力学构想与初步探索. 岩石力学与工程学报, 2021, 40(02): 217-232.
Xie H P, Li C B, Gao M Z, et al. Conceptualization and preliminary research on the rock mechanics retaining in situ geological condition of deep rock. Chinese Journal of Rock Mechanics and Engineering. 2021, 40(02): 217-232.
[12] Ranjith G P, Zhao J, Ju M H, et al. Opportunities and Challenges in Deep Mining: A Brief Review. Engineering, 2017, 3(04): 250-261.
[13] 李邵军, 谢振坤, 肖亚勋, 等. 国际深部地下实验室岩体原位力学响应研究综述. 中南大学学报(自然科学版), 2021, 52(08): 2491-2509.
Li S J, Xie Z K, Xiao Y X, et al. Review of international research on rock in situ rockmass behavior in deep underground research laboratory. Journal of Central South University(Science and Technology), 2021, 52(8): 2491−2509.
[14] 何满潮. 深部建井力学研究进展. 煤炭学报, 2021, 46(03): 726-746.
He M C. Research progress of deep shaft construction mechanics. Journal of China Coal Society, 2021, 46(3): 726-746.
[15] Gong F Q, Wang Y L, Luo S. Rockburst proneness criteria for rock materials: Review and new insights. Journal of Central South University, 2020, 27(10): 2793-2821.
[16] 李夕兵, 宫凤强, Zhao J, 等. 一维动静组合加载下岩石冲击破坏试验研究. 岩石力学与工程学报, 2010, 29(02): 251-260.
Li X B, Gong F Q, Zhao J, et al. Test study of impact failure of rock subjected to one dimensional coupled static and dynamic loads. Chinese Journal of Rock Mechanics and Engineering. 2010, 29(02): 251-260.
[17] 刘军忠, 许金余, 吕晓聪, 等. 主动围压下岩石的冲击力学性能试验研究. 振动与冲击, 2011, 30(06): 120-126.
Liu J Z, Xu J Y, Lv X C, et al. Experimental study on rocks mechanical capabilities under impact loading with confining pressure. Journal of vibration and shock. 2011, 30(06): 120-126.
[18] 王泽东, 许金余, 吕晓聪, 等 .动静组合加载下岩石的吸能特性研究. 兵工学报, 2010, 31(S1): 251-254.
Wang Z D, Xu J Y, Lv X C, et al. Research on Energy Absorption Property of Rock Under Dynamic and Static Loads. Acta Armamentarii. 2010, 31(S1): 251-254.
[19] 宫凤强, 李夕兵, 刘希灵. 三轴SHPB加载下砂岩力学特性及破坏模式试验研究. 振动与冲击, 2012, 31(08): 29-32.
Gong F Q, Li X B, Liu X L, Tests for sandstone mechanical properties and failure model under triaxial SHPB loading. Journal of vibration and shock. 2012, 31(08): 29-32.
[20] Liu K, Zhang Q B, Wu G, et al. Dynamic Mechanical and Fracture Behavior of Sandstone Under Multiaxial Loads Using a Triaxial Hopkinson Bar. Rock Mechanics and Rock Engineering, 2019, 52(7).
[21] 王春, 程露萍, 唐礼忠, 等. 高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律. 爆炸与冲击, 2019, 39(5): 053101.
Wang C, Cheng L P, Tang L Z, et al. Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure. Explosion And Shock Waves, 2019, 39(5): 053101.
[22] Li E, Gao L, Jiang X, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-dimensional pressure. Environmental Geology, 2019, 78(14): 388.1-388.13.
[23] Zhang Q B, Zhao J. A Review of Dynamic Experimental Techniques and Mechanical Behavior of Rock Materials[J]. Rock Mechanics & Rock Engineering, 2014, 47(4):1411-1478.
[24] 夏开文,徐 颖,陈 荣. 考虑深部赋存条件的岩石动态破坏试验研究进展[J]. 隧道与地下工程灾害防治,2019,1(1):58-75.
Xia Kaiwen, Xu Ying Chen Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58-75.
[25] Hu W R, Liu K, Potyondy D O, et al. 3D continuum-discrete coupled modelling of triaxial Hopkinson bar tests on rock under multiaxial static-dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134:104448.
[26] Hao X, Du W, Zhao Y, et al. Dynamic tensile behavior and crack propagation of coal under coupled static-dynamic loading[J]. International Journal of Mining Science and Technology, 2020, 30(5).
[27] Liu P, Zhou X, Qian Q. Experimental investigation of rigid confinement effects of radial strain on dynamic mechanical properties and failure modes of concrete[J]. International Journal of Mining Science and Technology, 2021(2).
[28] Hokka M, Black J, Tkalich D, et al. Effects of strain rate and confining pressure on the compressive behavior of Kuru granite[J]. International Journal of Impact Engineering, 2016, 91(May):183-193.
[29] Zhou Y X, Xi K, Li X B, et al. Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(1): 105-112.
[30] 王礼立. 应力波基础. 2版. 北京:国防工业出版社, 2005.
Wang L L. Foundations of stress waves. 2nd Edition. Beijing: National Defense Industry Press, 2005.
[31] 侯永强, 尹升华, 杨世兴, 等. 动态荷载下胶结充填体力学响应及能量损伤演化过程研究[J/OL]. 岩土力学: 1-12 [2021-11-04]. doi.org/10.16285/j.rsm.2020.1175.
Hou Y Q, Yin S H, Yang S X, et al. Study on the mechanical response and energy damage evolution process of cemented backfill under impact loading. Rock and Soil Mechanics. :1-12 [2021-11-04]. doi.org/10.16285/j.rsm.2020.1175.
[32] Lundberg B, A Split Hopkinson Bar study of energy absorption in dynamic rock fragmentation. 13F, 4T, 11R. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1976, 13(9).
[33] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 024(017):3003-3010.
Xie H P, Ju Y, Li L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chinese Journal of Rock Mechanics and Engineering. 2005, 024(017):3003-3010.
[34] 金解放, 吴越, 张睿, 等. 冲击速度和轴向静载对红砂岩破碎及能耗的影响. 爆炸与冲击, 2020, 40(10): 103101.
Jin J F, Wu Y, Zhang H R, et al. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone. Explosion And Shock Waves, 2020, 40(10): 103101.
[35] 王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究. 岩土力学, 2021, 42(10): 2647-2658.
Wang W, Liang X Y, Zhang M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading. Rock and Soil Mechanics. 2021, 42(10): 2647-2658.

PDF(2079 KB)

978

Accesses

0

Citation

Detail

段落导航
相关文章

/