不同入射角下圆柱涡激振动的数值研究

姜泽成,高云,刘磊,柴盛林

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 289-297.

PDF(1774 KB)
PDF(1774 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 289-297.
论文

不同入射角下圆柱涡激振动的数值研究

  • 姜泽成,高云,刘磊,柴盛林
作者信息 +

Numerical study on the vortex-induced vibration of a circular cylinder at different incidences

  • JIANG Zecheng, GAO Yun, LIU Lei, CHAI Shenglin
Author information +
文章历史 +

摘要

采用二维非定常雷诺平均N-S方程和剪应力运输k-ω模型,结合四阶龙格库塔法,选取四种不同入射角(α)对二自由度圆柱涡激振动响应影响进行数值研究。比较了不同来流角度下圆柱涡激振动幅值、结构振动频率、锁定区间、漩涡脱落模式、斯特劳哈尔数、水动力系数和捕能效率的影响。数值结果表明,来流角度变化会使圆柱涡激振动响应产生多频率特性,且随着来流角度的增加y方向振幅逐渐减小,x方向振幅逐渐增大。不同来流角度下涡激振动响应均产生明显的锁定现象,锁定区间宽度随来流角度的变化不明显。但随着来流角度的增加,y方向力系数均方根与x方向力系数均值均有下降的趋势。

Abstract

The effects of four different inflow angles (α) on the vortex-induced vibration response of a two-degree-of-freedom cylinder were studied using the two-dimensional unsteady Reynolds-averaged N-S equation and shear stress transport k-ω model, combined with the fourth-order Runge-Kutta method. The effects of different incoming flow angles on the amplitude of vortex-induced vibration, structural vibration frequency, locking interval, vortex shedding mode, Strouhal number, hydrodynamic coefficient and energy capture efficiency are compared. The numerical results show that the change of the incoming flow angle will make the vortex-induced vibration response of the cylinder produce multi-frequency characteristics, and with the increase of the incoming flow angle, the amplitude in the y direction gradually decreases and the amplitude in the x direction gradually increases. Different incoming flow angles have obvious locking phenomenon, but the width of locking interval has no obvious change on incoming flow angle. With the increase of inflow angle, the root mean square of force coefficient in y direction and the mean value of force coefficient in x direction both tend to decrease.

关键词

涡激振动 / 入射角 / 运动轨迹 / 流型 / 四阶龙格库塔法

Key words

vortex-induced vibration / incidence / trajectory / flow pattern / fourth-order runge kutta method

引用本文

导出引用
姜泽成,高云,刘磊,柴盛林. 不同入射角下圆柱涡激振动的数值研究[J]. 振动与冲击, 2023, 42(6): 289-297
JIANG Zecheng, GAO Yun, LIU Lei, CHAI Shenglin. Numerical study on the vortex-induced vibration of a circular cylinder at different incidences[J]. Journal of Vibration and Shock, 2023, 42(6): 289-297

参考文献

[1] DAHL J M, HOVER F S, TRIANTAFYLLOU M S, et al. Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers [J]. Journal of Fluid Mechanics, 2010, 643: 395-424.
[2] 康庄, 贾鲁生. 圆柱体双自由度涡激振动轨迹的模型试验 [J]. 力学学报, 2012, 44(6): 970-980.
Kang Zhuang, Jia Lusheng, Model test of vortex-induced vibration trajectory of cylinder with two degrees of freedom. [J] Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 970-980.
[3] 黄维平, 曹静, 张恩勇, et al. 大柔性圆柱体两自由度涡激振动试验研究 [J]. 力学学报, 2011, 043(002): 436-440.
Huang Weiping, Cao Jing, Zhang Enyong, et al. Experimental study on vortex-induced vibration of large flexible cylinder with two degrees of freedom. [J] Chinese Journal of Theoretical and Applied Mechanics, 2011, 043(002): 436-440.
[4] GOVARDHAN R N, WILLIAMSON C H K. Defining the 'modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping [J]. Journal of Fluid Mechanics, 2006, 561: 147.
[5] GAO Y, ZONG Z, LI Z, et al. Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses [J]. Marine Structures, 2018, 57: 165-179.
[6] ZHAO M, KAJA K, XIANG Y, et al. Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow [J]. Ocean Engineering, 2013, 73: 83-95.
[7] 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响 [J]. 力学学报, 2019, 51(2): 432-440.
Chen Weilin, Ji Chunning, Xu Dong, Influence of additional cylinder on vortex-induced vibration of cylinder under different control angles. [J] Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432-440.
[8] 徐万海, 谢武德, 高喜峰, et al. 考虑跨肩管土作用的悬跨管道涡激振动特性研究 [J]. 船舶力学, 2018, 22(4): 446-453.
Xu Wanhai, Xie Wude, Gao Xifeng, et al. Study on vortex-induced vibrations (VIV) of free spanning pipeline considering pipe-soil interaction boundary conditions. [J] Journal of Ship Mechanics, 2018, v.22;No.174(04): 446-453.
[9] 顾洪禄, 郭海燕, 李效民, et al. 基于柔性杆理论的脐带缆涡激振动数值模拟系统 [J]. 船舶力学, 2021, 25(2): 220-227.
Gu Honglu, Guo Haiyan, Li Xiaomin, et al. Numerical simulation system of vortex-induced vibration of umbilical cables based on flexible rod theory. [J] Journal of Ship Mechanics, 2021, 25(2): 220-227.
[10] 陈威霖, 及春宁, 许栋. 小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力 [J]. 振动与冲击, 2018, 37(23): 269-277.
Chen Weilin, Ji Chunning, Xu Dong. Numerical simulations for VIVs of two tandem cylinders with small spacing ratios:vibration responses and hydrodynamic forces. [J] Journal of Ship Mechanics, 2018, 37(23): 269-277.
[11] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechanics, 2004, 509: 23-62.
[12] 高云, 张壮壮, 杨斌, et al. 圆柱体横流与顺流方向涡激振动耦合模型研究 [J]. 振动与冲击, 2020, 39(11): 22-30.
Gao Yun, Zhang Zhuangzhuang, Yang Bin, et al. The study on cross-flow and in-line vortex-induced vibration coupled model of a circular cylinder. [J] Journal of Ship Mechanics, 2020, 39(11): 22-30.
[13] 刘畅, 付世晓, 唐笑颖, et al. 多频涡激振动状态下柔性立管的时变水动力特性识别 [J]. 振动与冲击, 2019, 38(01): 157-166.
Liu Chang, Fu Shixiao, Tang Xiaoying, et al. Time varying hydrodynamic characteristics identification of a flexible riser under multi-frequency VIVs. [J]. Journal of Vibration and Shock, 2019, 38(01): 157-166.
[14] AGARWAL P, FORRISTALL G. Non-Parametric Method for Estimating Extreme N-Year Profiles for Loop Current and Eddies; proceedings of the Offshore Technology Conference, F, 2017 [C].
[15] TOMMASO M, ZHAO J, LO J D, et al. The effect of angle of attack on flow-induced vibration of low-side-ratio rectangular cylinders [J]. Journal of Fluids and Structures, 2018, 82: 375-393.
[16] BOURGUET R. Flow-induced vibrations of a rotating cylinder in an arbitrary direction [J]. Journal of Fluid Mechanics, 2019, 860: 739-766.
[17] ZHANG L, MAO X, DING L. Influence of attack angle on vortex-induced vibration and energy harvesting of two cylinders in side-by-side arrangement [J]. Advances in Mechanical Engineering, 2019, 11(1): 1-13.
[18] 孔腾腾, 王嘉松, 吴文波, et al. 考虑附属管的实尺寸钻井隔水管系统涡激振动二维数值模拟研究 [J]. 振动与冲击, 2021, 40(2): 15-22.
Kong Tengteng, Wang Jiasong, Wu Wenbo, et al. Two-dimensional numerical simulation of VIV for an actual drilling riser system considering auxiliary lines. [J]. Journal of Vibration and Shock, 2021, 40(2): 15-22.
[19] ONGOREN A, ROCKWELL D. Flow structure from an oscillating cylinder Part 2. Mode competition in the near wake [J]. Journal of Fluid Mechanics, 1988, 191: 225-245.
[20] BRIKA D, LANEVILLE A. An Experimental Study of the Aeolian Vibrations of a Flexible Circular Cylinder at Different Incidences [J]. Journal of Fluids & Structures, 1995, 9(4): 371-391.
[21] BOURGUET R, JACONO D L. Flow-induced vibrations of a rotating cylinder [J]. Journal of Fluid Mechanics, 2014, 740: 342-380.
[22] GAO Y, YANG B, ZHU H, et al. Flow induced vibration of two rigidly connected circular cylinders in different arrangements at a low Reynolds number [J]. Ocean Engineering, 2020, 217: 107741.
[23] 徐万海, 罗浩, 孙海. 近自由表面海流能发电装置VIVACE流激振动的实验研究 [J]. 振动与冲击, 2019, 38(4): 83-89.
Xu Wanhai, Luo Hao, Xun Hai. An experimental study on flow-induced vibration of the VIVACE converter for harnessing ocean flow energy beneath a free surface. [J]. Journal of Vibration and Shock, 2019, 38(4): 83-89.
[24] WANG J, SU Z, LI H, et al. Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations [J]. Ocean Engineering, 2020, 208: 107455.
[25] ZHANG B, WANG K-H, SONG B, et al. Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion [J]. Energy, 2018, 165(PT.A): 949-964.
[26] SUN H, MA C, KIM E S, et al. Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness [J]. Renewable Energy, 2017, 107: 61-80.
[27] HAN P, PAN G, ZHANG B, et al. Three-cylinder oscillator under flow: Flow induced vibration and energy harvesting [J]. Ocean Engineering, 2020, 211: 107619.
[28] SUMER B M, FREDSøE J. Hydrodynamics Around Cylindrical Structures [M]. Hydrodynamics Around Cylindrical Structures, 1997.
[29] FACCHINETTI. M L, LANGRE. E D, BIOLLEY. F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures, 2003, 19(2): 123-140.
[30] GAO Y, ZHANG Z, ZOU. L, et al. Effect of surface roughness and initial gap on the vortex-induced vibrations of a freely vibrating cylinder in the vicinity of a plane wall [J]. Marine Structures, 2020, 69: 102663.
[31] BOURGUET R. Flow-induced vibrations of a rotating cylinder in an arbitrary direction [J]. Journal of Fluid Mechanics, 2018, 860: 739-766.
[32] GOVARDHAN R, WILLIAMSON C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder [J]. Journal of Fluid Mechanics, 2000, 420: 85-130.
[33] LEE J H, XIROS N, BERNITSAS M M. Virtual damper–spring system for VIV experiments and hydrokinetic energy conversion [J]. Ocean Engineering, 2011, 38(5-6): 732-747.
[34] WANG H, GENG L, DING L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations [J]. Applied Energy, 2020, 267: 114902.
[35] BUNZEL L O, FRANZINI G. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations; proceedings of the 9th European Nonlinear Dynamics Conference, F June 25-30, 2017 [C].
 

PDF(1774 KB)

Accesses

Citation

Detail

段落导航
相关文章

/