[1] DAHL J M, HOVER F S, TRIANTAFYLLOU M S, et al. Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers [J]. Journal of Fluid Mechanics, 2010, 643: 395-424.
[2] 康庄, 贾鲁生. 圆柱体双自由度涡激振动轨迹的模型试验 [J]. 力学学报, 2012, 44(6): 970-980.
Kang Zhuang, Jia Lusheng, Model test of vortex-induced vibration trajectory of cylinder with two degrees of freedom. [J] Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 970-980.
[3] 黄维平, 曹静, 张恩勇, et al. 大柔性圆柱体两自由度涡激振动试验研究 [J]. 力学学报, 2011, 043(002): 436-440.
Huang Weiping, Cao Jing, Zhang Enyong, et al. Experimental study on vortex-induced vibration of large flexible cylinder with two degrees of freedom. [J] Chinese Journal of Theoretical and Applied Mechanics, 2011, 043(002): 436-440.
[4] GOVARDHAN R N, WILLIAMSON C H K. Defining the 'modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping [J]. Journal of Fluid Mechanics, 2006, 561: 147.
[5] GAO Y, ZONG Z, LI Z, et al. Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses [J]. Marine Structures, 2018, 57: 165-179.
[6] ZHAO M, KAJA K, XIANG Y, et al. Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow [J]. Ocean Engineering, 2013, 73: 83-95.
[7] 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响 [J]. 力学学报, 2019, 51(2): 432-440.
Chen Weilin, Ji Chunning, Xu Dong, Influence of additional cylinder on vortex-induced vibration of cylinder under different control angles. [J] Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432-440.
[8] 徐万海, 谢武德, 高喜峰, et al. 考虑跨肩管土作用的悬跨管道涡激振动特性研究 [J]. 船舶力学, 2018, 22(4): 446-453.
Xu Wanhai, Xie Wude, Gao Xifeng, et al. Study on vortex-induced vibrations (VIV) of free spanning pipeline considering pipe-soil interaction boundary conditions. [J] Journal of Ship Mechanics, 2018, v.22;No.174(04): 446-453.
[9] 顾洪禄, 郭海燕, 李效民, et al. 基于柔性杆理论的脐带缆涡激振动数值模拟系统 [J]. 船舶力学, 2021, 25(2): 220-227.
Gu Honglu, Guo Haiyan, Li Xiaomin, et al. Numerical simulation system of vortex-induced vibration of umbilical cables based on flexible rod theory. [J] Journal of Ship Mechanics, 2021, 25(2): 220-227.
[10] 陈威霖, 及春宁, 许栋. 小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力 [J]. 振动与冲击, 2018, 37(23): 269-277.
Chen Weilin, Ji Chunning, Xu Dong. Numerical simulations for VIVs of two tandem cylinders with small spacing ratios:vibration responses and hydrodynamic forces. [J] Journal of Ship Mechanics, 2018, 37(23): 269-277.
[11] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechanics, 2004, 509: 23-62.
[12] 高云, 张壮壮, 杨斌, et al. 圆柱体横流与顺流方向涡激振动耦合模型研究 [J]. 振动与冲击, 2020, 39(11): 22-30.
Gao Yun, Zhang Zhuangzhuang, Yang Bin, et al. The study on cross-flow and in-line vortex-induced vibration coupled model of a circular cylinder. [J] Journal of Ship Mechanics, 2020, 39(11): 22-30.
[13] 刘畅, 付世晓, 唐笑颖, et al. 多频涡激振动状态下柔性立管的时变水动力特性识别 [J]. 振动与冲击, 2019, 38(01): 157-166.
Liu Chang, Fu Shixiao, Tang Xiaoying, et al. Time varying hydrodynamic characteristics identification of a flexible riser under multi-frequency VIVs. [J]. Journal of Vibration and Shock, 2019, 38(01): 157-166.
[14] AGARWAL P, FORRISTALL G. Non-Parametric Method for Estimating Extreme N-Year Profiles for Loop Current and Eddies; proceedings of the Offshore Technology Conference, F, 2017 [C].
[15] TOMMASO M, ZHAO J, LO J D, et al. The effect of angle of attack on flow-induced vibration of low-side-ratio rectangular cylinders [J]. Journal of Fluids and Structures, 2018, 82: 375-393.
[16] BOURGUET R. Flow-induced vibrations of a rotating cylinder in an arbitrary direction [J]. Journal of Fluid Mechanics, 2019, 860: 739-766.
[17] ZHANG L, MAO X, DING L. Influence of attack angle on vortex-induced vibration and energy harvesting of two cylinders in side-by-side arrangement [J]. Advances in Mechanical Engineering, 2019, 11(1): 1-13.
[18] 孔腾腾, 王嘉松, 吴文波, et al. 考虑附属管的实尺寸钻井隔水管系统涡激振动二维数值模拟研究 [J]. 振动与冲击, 2021, 40(2): 15-22.
Kong Tengteng, Wang Jiasong, Wu Wenbo, et al. Two-dimensional numerical simulation of VIV for an actual drilling riser system considering auxiliary lines. [J]. Journal of Vibration and Shock, 2021, 40(2): 15-22.
[19] ONGOREN A, ROCKWELL D. Flow structure from an oscillating cylinder Part 2. Mode competition in the near wake [J]. Journal of Fluid Mechanics, 1988, 191: 225-245.
[20] BRIKA D, LANEVILLE A. An Experimental Study of the Aeolian Vibrations of a Flexible Circular Cylinder at Different Incidences [J]. Journal of Fluids & Structures, 1995, 9(4): 371-391.
[21] BOURGUET R, JACONO D L. Flow-induced vibrations of a rotating cylinder [J]. Journal of Fluid Mechanics, 2014, 740: 342-380.
[22] GAO Y, YANG B, ZHU H, et al. Flow induced vibration of two rigidly connected circular cylinders in different arrangements at a low Reynolds number [J]. Ocean Engineering, 2020, 217: 107741.
[23] 徐万海, 罗浩, 孙海. 近自由表面海流能发电装置VIVACE流激振动的实验研究 [J]. 振动与冲击, 2019, 38(4): 83-89.
Xu Wanhai, Luo Hao, Xun Hai. An experimental study on flow-induced vibration of the VIVACE converter for harnessing ocean flow energy beneath a free surface. [J]. Journal of Vibration and Shock, 2019, 38(4): 83-89.
[24] WANG J, SU Z, LI H, et al. Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations [J]. Ocean Engineering, 2020, 208: 107455.
[25] ZHANG B, WANG K-H, SONG B, et al. Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion [J]. Energy, 2018, 165(PT.A): 949-964.
[26] SUN H, MA C, KIM E S, et al. Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness [J]. Renewable Energy, 2017, 107: 61-80.
[27] HAN P, PAN G, ZHANG B, et al. Three-cylinder oscillator under flow: Flow induced vibration and energy harvesting [J]. Ocean Engineering, 2020, 211: 107619.
[28] SUMER B M, FREDSøE J. Hydrodynamics Around Cylindrical Structures [M]. Hydrodynamics Around Cylindrical Structures, 1997.
[29] FACCHINETTI. M L, LANGRE. E D, BIOLLEY. F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures, 2003, 19(2): 123-140.
[30] GAO Y, ZHANG Z, ZOU. L, et al. Effect of surface roughness and initial gap on the vortex-induced vibrations of a freely vibrating cylinder in the vicinity of a plane wall [J]. Marine Structures, 2020, 69: 102663.
[31] BOURGUET R. Flow-induced vibrations of a rotating cylinder in an arbitrary direction [J]. Journal of Fluid Mechanics, 2018, 860: 739-766.
[32] GOVARDHAN R, WILLIAMSON C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder [J]. Journal of Fluid Mechanics, 2000, 420: 85-130.
[33] LEE J H, XIROS N, BERNITSAS M M. Virtual damper–spring system for VIV experiments and hydrokinetic energy conversion [J]. Ocean Engineering, 2011, 38(5-6): 732-747.
[34] WANG H, GENG L, DING L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations [J]. Applied Energy, 2020, 267: 114902.
[35] BUNZEL L O, FRANZINI G. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations; proceedings of the 9th European Nonlinear Dynamics Conference, F June 25-30, 2017 [C].