减振滑靴非线性动态特性数值分析

赵项伟,付良,杨珍,张晨辉,杨阳,解珍珍

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 307-312.

PDF(1420 KB)
PDF(1420 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 307-312.
论文

减振滑靴非线性动态特性数值分析

  • 赵项伟,付良,杨珍,张晨辉,杨阳,解珍珍
作者信息 +

Numerical analysis on the nonlinear dynamic characteristics of a damping slipper

  • ZHAO Xiangwei, FU Liang, YANG Zhen, ZHANG Chenhui, YANG Yang, XIE Zhenzhen
Author information +
文章历史 +

摘要

针对以降低火箭橇系统在轨振动为目的设计的减振滑靴,对其动态特性进行了数值分析。通过平面压缩试验及经验公式确定了减振滑靴减振层天然橡胶的本构参数,进而由有限元模型获得其非线性刚度,据此建立了减振滑靴非线性动力学模型对其求解并进行了试验验证。数值计算结果表明:减振滑靴相较于传统滑靴有着较好减振能力,其减振效率随其载荷提高而提高,但由于引入橡胶使得其在大载荷及高过载条件下易出现‘跳跃’现象。根据‘跳跃’现象确定了减振滑靴工作边界,典型工况下在1Ma(350m/s)速度下每枚减振滑靴载荷应小于311kg,在2Ma(700m/s)载荷则应低于181kg。

Abstract

In order to reduce the vibration of rocket sled motion on track, the damping slipper was designed, and the dynamic characteristics of that was numerically analyzed. Firstly, the constitutive parameters of natural rubber in the damping layer of damping slipper are determined by plane compression test and empirical formula, then it’s nonlinear stiffness was obtained from the finite element model, secondly, the nonlinear dynamic model of damping slipper was established, solved and verified by experiments, the calculation results show that: the damping slipper has better damping capacity than the traditional slipper, and it’s damping capacity increase with the increase of load, but the introduction of rubber makes it appear ‘jump’ under the condition of large load and high overload, according to this phenomenon, the working boundary of the damper slipper is determined, in the typical working conditions, the load of each damping slipper should be less than 311kg at 1 Ma and Less than 181kg at 2 Ma.

关键词

减振滑靴 / 振动 / 非线性 / 动态特性 / 跳跃

Key words

damping slipper / vibration / nonlinear / dynamic characteristics / jump

引用本文

导出引用
赵项伟,付良,杨珍,张晨辉,杨阳,解珍珍. 减振滑靴非线性动态特性数值分析[J]. 振动与冲击, 2023, 42(6): 307-312
ZHAO Xiangwei, FU Liang, YANG Zhen, ZHANG Chenhui, YANG Yang, XIE Zhenzhen. Numerical analysis on the nonlinear dynamic characteristics of a damping slipper[J]. Journal of Vibration and Shock, 2023, 42(6): 307-312

参考文献

[1] Beutler F J. Precision Measurement of supersonic rocket sled velocity-part II[J]. Journal of Jet Propulsion, 2015, 28(12): 809-816.
[2]王健. 高速火箭橇-轨道系统耦合动力学研究[D]. 南京:南京理工大学. 2011.
WANG Jian. The research for coupled dynamics of high speed rocket sled-track systems[D]. Nanjing: Nanjing University of Science Technology. 2011.
[3]赵项伟,杨珍,杨洋.火箭橇靴轨接触特性数值分析[J].振动与冲击,2022,41(01):238-243.
ZHAO Xiangwei, YANG Zhen, YANG Yang. Numerical analysis for slipper-rail contact characteristics of rocket sled. Journal of Vibration and Shock, 2022, 41(1): 238-243.
[4]杨珍,范坤,胡兵,等. 超声速单轨火箭橇动态载荷预示技术研究[J]. 兵器装备工程学报,2019, 40(3): 247-251.
YANG Zhen, FAN Kun, HU Bing, et al. Study on dynamic load prediction of the supersonic monorail rocket sled[J]. Journal of Ordnance Equipment Engineering , 2019, 40(3): 247-251.
[5]顾凯旋,龚明生,王磊,等.双轨火箭橇全时程动力学仿真分析研究[J]. 航空工程进展,2020,11(2):245:250.
GU Kaixuan, GONG Mingsheng, WANG Lei, et al.Study on full time dynamics simulation of two-track rocket sled[J]..Advances in Aeronautical Science and Engineering, 2020,11(2):245:250.
[6]Laird DJ. The investigation of hypervelocity gouging. Investigation of Hypervelocity Gouging[D], USA: Depertment of the air force air university, 2002.
[7]D Turnbull,HooserC,HooserM,etall.Soft Sled Test Capability at the Holloman High Speed Test Track[C].U.S Air Force T&E Days 2010 ,2010.
[8] Mike Hooser. Soft Sled- the Low Vibration Sled Test Capability at the Holloman High Speed Test Track [C]. 2018 Aerodynamic Measurement Technology and Ground Testing Conference,2018.
[9]周学文.捷联惯组火箭橇试验减振半台及弹道设计研究[D].西安:西安工业大学.2012.
ZHOU Xuewen.The Damping Base and Ballistic Design For The Rocket Sled Test of Strap-down Inertial Navigation System[D].Xian:Xian Technological University.
[10]赵广,刘健,刘占生.橡胶隔振器非线性动力学模型理论与实验研究[J].振动与冲击,2010,29(1):173:177.
ZHAO Guang,LIUJian,LIUZhansheng.Theoretical and experimental study on nonlinear dynamic model of rubber isolator[J].Journal of Vibration and Shock ,2010,29(1):173:177.
[11]任全彬,蔡体敏,安春利,等.硅橡胶”O”形密封圈Mooney-Rivlin模型常数的确定[J]. 固体火箭技术,2011,29(2):130:134.
REN Quanbin,CAITimin,ANChunli,etall.Determination on Mooney-Rivlin model constants of silicon rubber“o”ring[J]. Journal of Solid Rocket Technology. 2011,29(2):130:134.
[12] 何小静,上官文斌. 橡胶隔振器静态力-位移关系计算方法的研究[J].振动与冲击,2012, 31(11): 91-97.
HE Xiaojing,Shangguan Wenbin . A research on methods for calculating force versus displacement relations of a rubber isolator. Journal of Vibration and Shock, 2012, 31(11): 91-97.
[13]王江.带预紧硅泡沫垫层结构的减振系统分析[D]. 重庆:重庆大学.2008.
WANGJiang.Analysis on Vibration Absorption System of Structure with pre-tightening Porous Silicone Rubber Cushion[D]. Chongqing :Chongqing University.2008.
[14]候传伦,戚援,王慎,等.基于Mooney-Rivlin模型和Yeoh模型的橡胶弹性车轮刚度特性分析[J].内燃机与配件,2018,263(11):44-46.
HOU Chuanlun,QIYua,WANGShen,etal.Stiffness Characteristic Analysis of Rubber Resillient Wheel Based on Mooney-Rivlin Model and Yeoh Model[J].Internal Combustion Engine &Parts,2018,263(11):44-46.
[15]辛春亮,薛再清,涂健,等.有限元分析常用材料手册[M].北京:机械工业出版社,2019.
XINChunliang,XUEZaiqing,TUJian,et al.Handbook of Common Materials for Finite Element Analysis[M].Beijing:China Machine Press,2019.
[16] 孙伟,李以农,刘万里,等.橡胶隔振器非线性动态特性建模及试验研究[J].振动与冲击,2012,31(23):71:76.
SUNWei,LIYinong,LIUWanli,et al.Dynamic modeling and test for a nonlinear rubber damper[J]. Journal of Vibration and Shock,2012,31(23):71:76.
[17]赵项伟. 静偏心下挤压油膜阻尼器动力特性探究[D]. 南京: 南京航空航天大学. 2018.
ZHAO Xiangwei. Investigation for effects of static eccentricity on dynamic characteristics of squeeze film damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018.
[18]罗文波,姜侠,胡小玲,黄友剑. 减振橡胶疲劳黏滞生热的仿真分析[J]. 振动与冲击, 2021, 40(12): 210-218.
LUOWenbo,JIANGXia,HU Xiaoling,HUANGYoujian. Simulation analysis of the hysteresis heat generation in damping rubber. Journal of Vibration and Shock, 2021, 40(12): 210-218.
[19] 丁智平,穆龙海,卜继玲,等. 橡胶弹性元件低温刚度预测[J]. 振动与冲击, 2017, 36(14): 66-70.
DING Zhiping1,MU Longhai1, PU Jiling2,HUANG Youjian2, ZENG Jiaxin1. Stiffness Prediction of Rubber Spring at Lower Temperature. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(14): 66-70.
[20] 王海波.Duffing方程非线性振动特性的计算与分析[D].西安:西安建筑科技大学,2009.
Wang Haibo. The calculation and analysis of nonlinear vibration characteristics with duffing equation[D].Xian:Xian University of Architecture and Technology,2009.
[21] Furlow J S. Parametric dynamic load prediction of a narrow gauge rocket sled [D]. Las Cruces New Mexico USA: New Mexico State University, 2006.

PDF(1420 KB)

Accesses

Citation

Detail

段落导航
相关文章

/