空化射流具有比同等条件下普通水射流更强的冲击力,被广泛应用于各种领域。为进一步提高空化射流的工作效率,提出了新型的非淹没双空化射流。基于多相流Mixture模型和RNG k-ε输运方程,研究了双空化喷嘴中内外喷嘴径向间距D0与出口轴向间距L,以及外喷嘴来流压力P1对射流轴线速度、压力、含气率与比能的影响,并分析了最优D0、L、P1组合下射流冲击平板的壁面压力分布特征。研究结果表明:当D0=1.5mm,且L=2mm时射流的流场特性最优,在此结构下的最优靶距为20-25mm。对该非淹没双空化射流冲击特性分析发现,相比于传统中心体空化喷嘴,其可产生体积更大的空化云和更好的冲击效果。研究结果可为空化射流的高效应用提供理论基础。
Abstract
Compared with plain waterjet, cavitating water jet can produce stronger impact forces and is thus being applied in all kinds of applications. Aiming at further improving the efficiency, a new type of cavitating waterjet called non-submerged dual cavitating waterjet is proposed. By using the Mixture model of multiphase flow and the RNG k-ε transport equation, the effects of outer nozzle width D0, outer nozzle extension length L and outer nozzle pressure P1 on the velocity, pressure, and vapor content are analyzed, as well as the impact characteristics under the optimal combination of D0、L、P1. The results show that the optimal flow field appears when D0 = 1.5mm and L = 2mm, and the optimal standoff distance under this condition is 20-25mm. Through analyzing the impact characteristics, it can be found that the non-submerged dual cavitating waterjet produces a larger volume of cavitation cloud and better impact effect, compared with the traditional central body cavitation nozzle. The results could provide a theoretical basis for the high efficient application of cavitating waterjet.
关键词
水射流 /
非淹没 /
双空化 /
冲击 /
流场
{{custom_keyword}} /
Key words
waterjet /
non-submerged /
dual cavitation /
impact /
flow field
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汤积仁,汪壘,卢义玉,等. 增压式脉冲水射流脉动特性可视化试验研究[J]. 振动与冲击, 2021, 40(20): 1-8.
TANG Jiren, WANG Lei, LU Yiyu, et al. Visual experimental study on pulsation characteristics of pressurized pulsed water jet [J]. Journal of Vibration and Shock.2021.40(20):1-8.
[2] 葛兆龙,赵汉云,卢义玉,等. 高压水射流冲击作用下煤-砂岩-页岩损伤破裂特征[J]. 振动与冲击, 2021, 40(13): 174-181.
GE Zhaolong, ZHAO Hanyun, Lu Yiyu, et al. Damage and fracture characteristics of coal sandstone shale under high pressure water jet impact [J]. Journal of Vibration and Shock.2021.40(13):174-181.
[3] 刘勇,崔家玮,魏建平,等.自激振荡脉冲超临界二氧化碳射流发生机制研究[J/OL].煤炭学报:1-14[2021-12-03]
LIU Yong, Cui Jiawei, Wei Jianping, et.al Generating mechanism of self-excited oscillation pulsed super-critical carbon dioxide jet [J]. Journal of China Coal Society,2022,47(70:):2643-2655.
[4] SOYAMA H. Cavitating jet: A review[J]. Applied Sciences, 2020, 10(20): 7280.
[5] FUJISAWA N, FUJITA Y, YANAGISAWA K, et al. Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet[J]. Experimental Thermal and Fluid Science, 2018, 94: 159-167
[6] 卢义玉, 葛兆龙, 李晓红,等. 高压空化水射流破岩主要影响因素的研究[J]. 四川大学学报:工程科学版, 2009(6):1-5.
LU Yiyu, GE Zhaolong, LI Xiaohong, et al. Study on main influencing factors of rock breaking by high pressure cavitating water jet [J]. Journal of Sichuan University :Engineering Science Edition,2009(6):1-5.
[7] 王星, 徐琴, 张勇,等. 纳米胶体自激脉冲空化射流抛光技术[J]. 光学精密工程, 2018, 26(9):10.
WANG Xing, XU Qin, ZHANG Yong, et al. Nano colloid self-excited pulse cavitation jet polishing technology [J], Optics and Precision Engineering,2018,26(9):10.
[8] 李登, 李晓红, 康勇,等. 风琴管喷嘴内表面粗糙度对高压射流特性的影响试验研究[J]. 机械工程学报, 2015, 51(17):8.
LI Deng, LI Xiaohong, KANG Yong, et al. Experimental study on the effect of inner surface roughness of organ tube nozzle on high pressure jet characteristics [J]. Chinese Journal of Mechanical Engineering,2015,51(17):8.
[9] 曹泽平. 新型空化喷嘴的射流与冲蚀特性研究[D]. 四川:西南交通大学,2020.
CAO Zeping. Study on jet and erosion characteristics of a new cavitation nozzle [D]. Sichuan: Southwest Jiaotong University,2020.
[10] HITOSHI S. Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening[J], Journal of Materials Processing Tech.2019,269: 65-78
[11] MARCON A, MELKOTE S N, YODA M. Effect of nozzle size scaling in co-flow water cavitation jet peening[J], Journal of Manufacturing Processes.2018,31:372-381
[12] LIU Huanlong, CAO Zeping, XIE Chixin,et.al. Research on erosion characteristics of a novel cavitation nozzle under non submerged condition[J], Mechanical Engineering Science.2020,235:988-998
[13] LI D, KANG Y, WANG X, et al. Effects of nozzle inner surface roughness on the cavitation erosion characteristics of high speed submerged jets[J]. Experimental Thermal and Fluid Science, 2016, 74: 444-452.
[14] LI D, KANG Y, DING X, et al. Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet[J]. Experimental Thermal and Fluid Science, 2017, 82: 314-325.
[15] LI D, KANG Y, DING X, et al. Effects of area discontinuity at nozzle inlet on the characteristics of self-resonating cavitating waterjet[J]. Chinese Journal of Mechanical Engineering, 2016, 29(4): 813-824.
[16] 郭关柱.强剪切流变仪的研制及剪切空化的实验研究[D].杭州.浙江大学.2008.
GUO Guanzhu. Development of strong shear rheometer and experimental study of shear cavitation[D].Hangzhou.Zhejiang University.2008.
[17] 曹荣祯.基于流体可压缩性的淹没水射流空化流动数值模拟[D].兰州.兰州理工大学.2020.
CAO Rongzhen. Numerical simulation of cavitating flow of submerged water jet based on fluid compressibility[D].Lanzhou. Lanzhou University of Technology.2020.
[18] 朱佳凯.低温空化非稳态特性和机理研究[D].杭州.浙江大学.2018.
ZHU Jiakai. Study on unsteady characteristics and mechanism of low temperature cavitation [D]. Hangzhou.Zhejiang University.2018
[19] 王建杰.空化水射流冲击强化2A12铝合金的性能分析及机理研究[D].镇江.江苏大学.2017.
WANG Jianjie .Performance analysis and mechanism study of 2A12 aluminum alloy strengthened by cavitating water jet impact[D].Zhenjiang. Jiangsu University.2017.
[20] 刘鲁兴,邓松圣等.不同入口形状中心体喷嘴诱发空化的模拟[J]. 煤矿机械,2018,12(39):47-49.
LIU Luxing, DENG Songsheng, et,al.Simulation of cavitation induced by centroid nozzle with different inlet shapes [J]. Coal Mine Machinery,2018,12,(39):47-49.
[21] 邓松圣,廖松等. 中心体空化喷嘴全尺寸结构优化研究[J].煤矿机械,2017,12(12):98-101.
DENG Songsheng, LIAO Song, et.al. Study on full-scale structure optimization of center body cavitation nozzle [J].
Coal Mine Machinery,2017,12(12):98-101.
[22] 张峰.中心体喷嘴射流特性的实验研究与数值计算[D].镇江.江苏大学.2010.
ZHANG Feng .Experimental study and numerical calculation of jet characteristics of center body nozzle [D]. Zhenjiang. Jiangsu University.2010.
[23] KONSTANTIN L,ISKANDER A. Towards a theory of dynamics of a single cavitation bubble in a rigid micro-confinement[J], International Journal of Multiphase Flow.2020,130:1-17.
[24] 田忠.高速淹没射流冲击压强的试验和数值模拟研究[D].成都.四川大学.2003.
TIAN Zhong .Experimental and numerical simulation study on impact pressure of high speed submerged jet [D].Chengdu. Sichuan University.2003.
[25] 沈忠厚.水射流理论与技术[ M ].东营:石油大学出版社,1988.
[26] 杨勇飞.淹没式高压水空化射流机理及空泡冲击波强化金属性能研究[D].镇江.江苏大学.2020.
YANG Yongfei .Study on Mechanism of submerged high pressure water cavitating jet and metal properties strengthened by cavitation shock wave [D]. Zhenjiang. Jiangsu University.2020.
[27] 吕炜.近壁空化泡溃灭的数值模拟[D].杭州.浙江大学.2015
LV Wei .Numerical simulation of near wall cavitation bubble collapse [D].Hangzhou. Zhejiang University.2015.
[28] KIM K-H,CHAHINE G,FRANC J-P et al.Advanced Experimental and Numical Techniques for Cavation Eruson Prediction[M],Springer,2014.
[29] 倪鸣星.高压水射流清洗效果及损伤机理研究[D].徐州.中国矿业大学.2019
NI Mingxing. Study on cleaning effect and damage mechanism of high pressure water jet [D].Xuzhou. China University of Mining and Technology.2019.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}