液体火箭冷弹射推进剂充液比影响研究

王璟慧1,姜毅1,杨昌志2,魏冬冬2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 313-324.

PDF(2351 KB)
PDF(2351 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 313-324.
论文

液体火箭冷弹射推进剂充液比影响研究

  • 王璟慧1,姜毅1,杨昌志2,魏冬冬2
作者信息 +

Influence of propellant filling ratio for liquid rocket cold ejection on rocket launch accuracy

  • WANG Jinghui1, JIANG Yi1, YANG Changzhi2, WEI Dongdong2
Author information +
文章历史 +

摘要

为研究冷弹射载荷作用下不同充液比的液体推进剂晃动对火箭发射精度的影响,以冷弹射液体火箭为研究对象,采用基于MPS方法的流-固耦合技术对推进剂晃动的动力学响应进行研究,得到液体推进剂充液比对火箭贮箱的干扰及其对火箭初始扰动和适配器受力特性的影响。结果表明:贮箱充液比越大,液体推进剂对单个贮箱的作用力越大;在一定范围内,随着充液比的增加,推进剂晃动使得火箭的离轨俯仰和偏航角速度先增大后减小,80%的充液比会使得火箭初始扰动及适配器受力较为恶劣;推进剂晃动问题在液体火箭冷弹射动力学研究中不可忽略。

Abstract

In order to study the effects of liquid propellant sloshing with different liquid filling ratios on rocket launch accuracy under cold ejection load, the liquid rocket with cold ejection is studied in this paper. The dynamic response of propellant sloshing is studied by fluid-solid coupling technique based on MPS method. Finally, the interference on rocket tank and influence on initial disturbance of rocket and mechanical characteristics of adaptor at different propellant liquid filling ratio are obtained. The results show that the larger the liquid filling ratio is, the greater the force of liquid propellant on a single tank is; In a certain range, with the increase of the filling ratio, the propellant sloshing makes the off-orbit pitch and yaw angular velocity of the rocket increase first and then decrease;  When the liquid filling ratio is 80%, the initial disturbance of the rocket and the force of the adapter are worse. Propellant sloshing can not be ignored in the dynamics study of liquid rocket cold ejection.

关键词

液体火箭 / 推进剂晃动 / 充液比 / 流-固耦合

Key words

liquid rocket / propellant sloshing / liquid filling ratios / fluid-structure coupling

引用本文

导出引用
王璟慧1,姜毅1,杨昌志2,魏冬冬2. 液体火箭冷弹射推进剂充液比影响研究[J]. 振动与冲击, 2023, 42(6): 313-324
WANG Jinghui1, JIANG Yi1, YANG Changzhi2, WEI Dongdong2. Influence of propellant filling ratio for liquid rocket cold ejection on rocket launch accuracy[J]. Journal of Vibration and Shock, 2023, 42(6): 313-324

参考文献

[1] 潘恺. 运载火箭芯一级贮箱浮板式防晃结构设计及性能分析[D]. 哈尔滨工业大学, 2015.
PAN Kai. The anti-sloshing structure design and performance analysis of the floating plate of carrier rocket level 1 tank [D]. Harbin Institute of Technology, 2015.
[2] 岳宝增,马伯乐,唐勇,刘峰.液体大幅晃动情形的航天器刚液耦合动响应仿真分析[J].宇航学报,2022,43(02):173-182.
YUE Baozeng,MA Bole,TANG Yong,et al.Dynamic simulation and analysis of rigid-liquid coupling spacecraft with large-amplitude liquid sloshing.[J].Journal of Astronautics,2022,43(02):173-182.
[3] 闫玉龙,申云峰,岳宝增.含板类柔性附件的充液航天器动力学研究[J].宇航学报,2020,41(5):531-540.
Yan Yu-long,Shen Yun-feng,Yue Bao-zeng.Dynamics of liquid filled spacecraft with flexible plate appendages [J]. Journal of Astronautics, 2020,41(5):531-540.
[4] 吴文军,高超南,岳宝增,邓明乐.圆柱贮箱内液体非线性稳态晃动实验及动力学特性分析[J].宇航学报,2021,42(09):1078-1089.
WU Wen-jun, GAO Chao-nan, YUE Bao-zeng, DENG Ming-le. Experimental study and dynamic characteristic analysis of nonlinear steady state sloshing of liquid in a cylindrical tank[J]. Journal of Astronautics, 2021,42(09):1078-1089.
[5] 王为,夏恒新,李俊峰,等.半球形容器中液体自由晃动非线性现象的实验研究[J].清华大学学报(自然科学版),2008,48(11):2009-2012.
Wang Wei, Xia Heng-xin, Li Jun-feng,et al. Experimental investigation on the nonlinear phenomenon of liquid free sloshing in a hemisphere container[J]. Journal of Tsinghua University (Science and Technology), 2008,48(11):2009-2012.
[6] 周倩倩,谭永华,徐自力,等.运载火箭圆柱形贮箱中推进剂大幅晃动的数值模拟[J].推进技术,2022,43(05):358-364.
ZHOU Qian-qian, TAN Yong-hua, XU Zi-li,et al. Numerical simulation of large sloshing of propellant in cylinder tank of launch vehicle[J]. Journal of propulsion technology, 2022,43(05):358-364.
[7] Tang Y, Yue B Z. Simulation of large-amplitude three-dimensional liquid sloshing in spherical tanks[J]. AIAA Journal, 2017,55(6):2052-2059.
[8] 朱琳,唐国安,柳征勇等.推进剂与贮箱液固耦合振动的动力学分析[J].振动与冲击,2012,31(05):139-143.
ZHU Lin, TANG Guo-an, LIU Zheng-yong ,et al. Dynamic analysis for fluid-structure coupled vibration of propellants and fuel tank [J]. Journal of Vibration and Shock, 2012,31(05):139-143.
[9] 汤晓昀,包光伟. 柔性贮箱内液体晃动的分析模型[J]. 上海交通大学学报, 2004(8): 1412-1416.
TANG Xiao-yun, BAO Guang-wei. Analysis model of liquid slosh in flexible container [J]. Journal of Shanghai Jiaotong University, 2004(8): 1412-1416.
[10] 陈科,李俊峰等. 矩形贮箱内液体非线性晃动动力学建模与分析[J]. 力学学报, 2005(3): 339-344.
CHEN Kei, LI Jun-feng ,et al. Modeling and analysis of liquid nonlinear sloshing dynamics in rectangular tanks. Chinese Journal of Theoretical and Applied MechanicsACTA Mechanica Sinica, 2005(3): 339-344.
[11] 朱昶帆,唐国安,张美艳. 考虑推进剂晃动的火箭液固耦合分析的比拟算法[J]. 动力学与控制学报,2014,12(03):239-242.
ZHU Chang-fan, TANG Guo-an, ZHANG Mei-yan. Comparison algorithm for liquid-solid coupling analysis of rocket considering propellant slosh [J]. Journal of Dynamics and Control ,2014,12(03):239-242.
[12] 董锴. 航天器推进剂晃动的动力学建模与抑制方法研究[D]. 哈尔滨工业大学,2009.
DONG Kai. Study on dynamic modeling and suppression method of spacecraft propellant slosh [D]. Harbin Institute of Technology, 2009.
[13] Faltinsen O M, Rognebakke O F, Timokha A N. Resonant three-dimensional nonlinear sloshing in a square-base basin[J]. Journal of Fluid Mechanics, 2003, 487: 1-42.
[14] 魏冬冬,姜毅,赵良玉等. 液体火箭冷弹射系统推进剂晃动研究[J]. 弹箭与制导学报,2021,41(03):34-38.
WEI Dong Dong, JIANG Yi, ZHAO Liang-yu, et al. Research on Propellant Sloshing of Liquid Rocket Cold Launch System [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021,41(03):34-38.
[15] 马亮,刘昊,魏承等.含隔板球形贮箱液体晃动激励频率影响分析[J].振动与冲击,2019,38(22):257-262+270.
MA Liang, LIU Hao, WEI Cheng, et al. Effect of excitation frequency on the liquid sloshing in spherical tanks with baffle [J]. Journal of Vibration and Shock ,2019,38(22):257-262+270.
[16] 杨鹏飞,陈刚,薛杰等.航天器弹性充液贮箱双向流固耦合响应特性数值分析[J].振动与冲击,2021,40(12):283-289.
YANG Peng-fei, CHEN Gang, CUI Qing, et al. Numerical simulations on response characteristics of a spacecraft elastic liquid-filled tank by a fluid-structure coupling method [J]. Journal of Vibration and Shock ,2021,40(12):283-289.
[17] Koshizuka S, Tamako H, Oka Y. A Particle Method for Incompressible Viscous Flow with Fluid Fragmentation[J]. Journal of Computational Fluid Dynamics. 1995, 4: 29-46.
[18] ChikazawaY, Koshizuka S and Oka Y. A Particle Method for Elastic and Visco-Plastic Structures and Fuid-Structure Iteractions[J]. Computational Mechanics. 2001, 27: 97-106.
[19] 文潇, 万德成. MPS方法数值模拟减摇水舱晃荡流动问题[J]. 水动力学研究与进展(A辑), 2019(4):489-493.
WEN Xiao, WAN De-chen. Numerical simulation of liquid sloshing in anti-roll tank by MPS method [J]. Chinese Journal of Hydrodynamics(A), 2019(4):489-493.
[20] Abramson H N. The dynamic behavior of liquids in moving containers[M]. Washington, D. C: NASA, 1966.
[21] 李旭. 燃料贮箱内浮球式防晃结构的力学性能分析[D].哈尔滨工业大学,2016.
LI Xu. The study of the mechanical properties of the floating ball structure on restraining sloshing in propellant tank [D]. Harbin Institute of Technology, 2016.
[22] Berglund M D, Bassett C E, Kelso J M, et al. The Boeing Delta IV Launch Vehicle—Pulse-Settling Approach for Second-Stage Hydrogen Propellant Management[J]. Acta Astronautica, 2007, 61(1): 416-424.
[23] 刘延柱. 关于充液刚体的动力学方程[J]. 上海力学, 1987, 8(3):80-82.
LIU Yan-zhu. Dynamical equations of liquid-filled rigid bodies [J]. Shanghai mechanical, 1987, 8(3):80-82.
[24] 夏恒新. 多腔充液晃动及其飞行器系统耦合动力学研究[D]. 南京理工大学,2010.
XIA Heng-xin. Study on multi-cavity liquid-filled sloshing and coupling dynamics of aircraft system [D]. Nanjiing University of Science & Technology, 2010.

PDF(2351 KB)

Accesses

Citation

Detail

段落导航
相关文章

/