考虑本体质量的滚珠丝杠惯容系统建模与性能分析

胡银龙,王凯毅,程昌俊,黄崇淇,朱泽卿,郑瑞菲

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 55-60.

PDF(1610 KB)
PDF(1610 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 55-60.
论文

考虑本体质量的滚珠丝杠惯容系统建模与性能分析

  • 胡银龙,王凯毅,程昌俊,黄崇淇,朱泽卿,郑瑞菲
作者信息 +

Modeling and analysis of ball-screw inerters with consideration of physical mass

  • HU Yinlong,WANG Kaiyi,CHENG Changjun,HUANG Chongqi,ZHU Zeqing,ZHENG Ruifei
Author information +
文章历史 +

摘要

针对惯容在研究中本体质量常被忽略的问题,基于一类滚珠丝杠惯容,提出了一种考虑惯容本体质量的端口质量模型。建立了基于滚珠丝杠惯容的一阶系统和二阶系统数学模型和虚拟样机仿真模型,通过对比数学模型和虚拟样机仿真模型的频率响应,并通过台架实验,证实了所提出的惯容端口质量模型的有效性。进一步,基于四分之一车辆悬架模型,分析了惯容本体质量对乘坐舒适性的影响,对比分析了考虑和不考虑本体质量两种情形下的系统性能。优化仿真结果表明,考虑本体质量和不考虑本体质量两种情形下系统性能存在一定差异,且基于端口质量模型的优化结果可进一步提升系统舒适性,说明了考虑惯容本体质量的必要性以及所提端口质量模型的有效性。

Abstract

In terms of the fact that the physical mass of inerters is often ignored in the existing research, a port-mass model for ball-screw inerters with physical mass consideration is proposed. Mathematical models and virtual simulation prototypes of a first-order system and a second-order system with a ball-screw inerter are established. By comparing the frequency responses of the mathematical model and simulation model, and through bench experiments, the accuracy of the proposed port-mass model is verified. Furthermore, based on a quarter-car vehicle model, the influence of the inerter physical mass on ride comfort is analyzed. The optimization simulation results show that there is an apparent difference in system performance between the cases with and without the physical mass consideration. Moreover, the optimization results indicate that comfort performance can be further improved based on the port-mass model. This demonstrates the necessity of considering the physical mass of inerters and the effectiveness of the proposed port-mass model.

关键词

惯容 / 端口质量模型 / 性能分析 / 车辆悬架

Key words

inerter / port-mass model / performance analysis / vehicle suspension

引用本文

导出引用
胡银龙,王凯毅,程昌俊,黄崇淇,朱泽卿,郑瑞菲. 考虑本体质量的滚珠丝杠惯容系统建模与性能分析[J]. 振动与冲击, 2023, 42(6): 55-60
HU Yinlong,WANG Kaiyi,CHENG Changjun,HUANG Chongqi,ZHU Zeqing,ZHENG Ruifei. Modeling and analysis of ball-screw inerters with consideration of physical mass[J]. Journal of Vibration and Shock, 2023, 42(6): 55-60

参考文献

[1] SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transaction on Automatic Control, 2002, 47 (10): 1648-1662.
[2] WANG F C, HONG M F, LIN T C. Designing and testing a hydraulic inerter[J], Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2011 225: 66.
[3] SWIFT S J, SMITH M C, GLOVER A R, et al. Design and modelling of a fluid inerter[J]. International Journal of Control,2013,86 (11): 2035-2051.
[4] WANG F C, CHAN H. Vehicle suspensions with a mechatronic network strut[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2011, 49 (4/6): 811-830.
[5] NING D, DU H, ZHANG N, et al. A semi-active variable equivalent stiffness and inertance device implemented by an electrical network[J]. Mechanical Systems and Signal Processing, 2021, 156: 107676.
[6] ZHU Z H, WANG R C, YANG L, et al. Modelling and control of a semi-active dual-chamber hydro-pneumatic inerter-based suspension system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(9): 0954407021990916.
[7] HE H N, LI Y, JIANG J Z, et al. Using an inerter to enhance an active-passive-combined vehicle suspension system[J]. International Journal of Mechanical Sciences, 2021, 204: 106535.
[8] 仇成群,沈钰杰,施德华. 新型车辆机电悬架的正实优化与性能分析[J]. 振动与冲击,2021, 40(21): 76-81.
QIU C Q, SHEN Y J, SHI D H. Positive real optimization and performance analysis of new type vehicle electromechanical suspension[J]. Journal of Vibration and Shock, 2021, 40 (21): 76-81.
[9] LIU M Y, MI J, TAI W C, et al. A novel configuration for high power-output and highly efficient vibration energy harvesting[J]. Applied Energy, 2021,295: 116957.
[10] 朱子恒,徐琳,邹俊逸,等.机械整流式振动能量回收器的研究[J]. 振动与冲击,2020,39(20): 286-294.
ZHU Z H, XU L, ZOU J Y, et al. A study on a vibration energy harvester with mechanical rectification[J]. Journal of Vibration and Shock, 2020, 39(20): 286-294.
[11] DAS S, CHAKRABORTY A, BaARUA I. Optimal tuning of SMA inerter for simultaneous wind induced vibration control of high-rise building and energy harvesting[J]. Smart Materials and Structures, 2021, 30(2): 025027.
[12] HU Y L, WANG J, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J], Engineering Structures, 2018, 177: 198-209.
[13] ZHANG R, CAO Y, DAI K. Response control of wind turbines with ungrounded tuned mass inerter system (TMIS) under wind loads[J]. Wind and Structures, 2021, 32(6): 573-586.
[14] WANG Q H, TIAN H R, QIAO H S, et al. Wind-induced vibration control and parametric optimization of connected high-rise buildings with tuned liquid-column-damper–inerter[J]. Engineering Structures, 2021, 226: 111352.
[15] ZHANG R F, WU M J, REN X S, et al. Seismic response reduction of elastoplastic structures with inerter systems[J]. Engineering Structures, 2021, 230: 111661.
[16] 唐锋,王勇,丁虎,等.天棚半主动惯容隔振器动态特性研究[J].振动与冲击,2021,40(15): 65-72.
TANG F, WANG Y, DING H, et al. Dynamic characteristics of skyhook semi-active inerter-based vibration isolator[J]. Journal of Vibration and Shock, 2021, 40(15): 65-72.
[17] HUA X G, Y J, HUANG Z W, et al. Optimal design and performance evaluation of a novel hysteretic friction tuned inerter damper for vibration control systems[J]. Structural Control and Health Monitoring, 2021, 28(8): e2775.
[18] 郭梓龙,王琳,倪樵,等.接地惯容式减振器对悬臂输流管稳定性和动态响应的影响研究[J].力学学报, 2021, 53(06): 1769-1780.
GUO Z L, WANG L, NI Q, JIA Q Q, et al. Research on the influence of grounded inerter-based absorber on the stability and dynamic response of cantilevered pipe conveying fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1769-1780.
[19] 李阳,温华兵,刘伟,等.间隙非线性对惯容-橡胶复合隔振器位移响应的影响研究[J].振动与冲击, 2020, 39(17): 268-274.
LI Y, WEN H B, LIU W, et al. Effects of gap nonlinearity on displacement response of inerter-rubber vibration isolator[J]. Journal of Vibration and Shock, 2020, 39(17): 268-274.
[20] 李壮壮,申永军,王军,等.含有惯容的动力吸振器减振性能研究[J].石家庄铁道大学学报(自然科学版), 2020, 33(02): 64-72+101.
LI Z Z, SHEN Y J, WANG J, et al. Study on vibration reduction of dynamic vibration absorbers with inerter[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(02): 64-72+101.
[21] SMITH M C. The Inerter: A Retrospective[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3: 361-391.
[22] SCHEIBE F, SMITH M C. Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions[J]. Vehicle System Dynamics, 2009, 47(10): 1229-1252.

PDF(1610 KB)

Accesses

Citation

Detail

段落导航
相关文章

/