当气井发生屈曲且程度较为严重时,油管轨迹复杂,继续使用直井内的流体瞬变模型求解关井后的压力波动问题误差太大,计算结果失去参考价值。本文基于摄动法,建立了适用于屈曲管柱内流体的瞬变流动模型,并考虑了关阀时间、井口终止开度及油管屈曲程度等因素,分析计算了气井突然关井后压力及流速的变化情况。通过计算分析可知,当油管存在螺旋屈曲时,在屈曲部位会产生局部摩阻,压力波会被耗散掉,相比不发生螺旋屈曲的情况,井口压力较小。随着关阀时间的增加,井口压力峰值随之减小,且随着关阀时间的增加,压力变化曲线的规律性越来越不明显;关阀用时越大,井口速度减小地越缓慢,波动幅度和持续时间也相应降低。螺距越大,油管屈曲程度越小,管内流体受到的摩阻减小,井口压力越大。该模型的计算结果更贴近真实数据,对现场作业具有积极的指导意义。
Abstract
When the gas well buckles seriously, the tubing trajectory is complex, so the error of using the fluid transient model in the vertical well to solve the pressure fluctuation after shut in is too large, and the calculation results lose the reference value. Based on the perturbation method, a transient flow model suitable for the fluid in the buckling string is established in this paper. Taking into account the valve closing time, wellhead end opening and tubing buckling degree, the changes of pressure and flow rate of gas well after sudden shut in are analyzed and calculated. According to the calculation and analysis, when the tubing has spiral buckling, the local friction will be generated at the buckling part, and the pressure wave will be dissipated. Compared with the case without spiral buckling, the wellhead pressure is smaller. With the increase of valve closing time, the peak value of wellhead pressure decreases, and with the increase of valve closing time, the regularity of pressure change curve becomes less and less obvious; with the increase of valve closing time, the wellhead speed decreases more slowly, and the fluctuation amplitude and duration also decrease correspondingly. When the end opening of the valve is 0, the fluctuation of wellhead pressure lasts for a long time. The larger the pitch is, the smaller the tubing buckling is, the smaller the friction of the fluid in the tubing is, and the higher the wellhead pressure is. The calculation results of the model are closer to the real data, which has a positive guiding significance for the field operation.
关键词
气井 /
瞬时关井 /
管柱 /
螺旋屈曲 /
压力波动
{{custom_keyword}} /
Key words
Gas Well /
Instantaneous Shut-in Effect /
Tubing String /
Spiral Buckling /
Pressure Fluctuation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. ZHI Z, JING L, YUSHAN Z, et al. Finite service life evaluation method of production casing for sour-gas wells[J]. Journal of Petroleum Science and Engineering, 2018, 165: 171-180.
[2]. ZHANG Z, ZHANG N, LIU Z, et al. Synergistic effects of corrosion time and stress on corrosion of casing steel in H2S/CO2 gas wells[J]. Materials and Corrosion, 2018, 69: 386-392.
[3]. ZHI Z, LIYUN S, QINGSHENG Z, et al. Environmentally assisted cracking performance research on casing for sour gas wells[J]. Journal of Petroleum Science and Engineering, 2017, 158: 729-738.
[4]. 张智, 何雨, 黄茜, 等. 含硫气井完整性风险等级预测研究[J]. 中国安全科学学报, 2017(10): 155-161.
ZHANG Zhi,HE Yu,HUANG Qian,et al. Research on prediction of integrity risk grade of sour gas well [J]. China Safety Science Journal, 2017,27(10): 155-161.
[5]. ZHANG Z, ZHENG Y, LI J, et al. Stress corrosion crack evaluation of super 13Cr tubing in high-temperature and high-pressure gas wells[J]. Engineering Failure Analysis, 2019, 95: 263-272.
[6]. 李海洋, 张智, 张继武, 等. 高产气井产量变化对油管柱振动的影响[J]. 重庆科技学院学报(自然科学版), 2013, 15(6): 28-30, 34.
LI Haiyang,ZHANG Zhi,ZHANG Jiwu,et al. The impact of changes in the high-yield gas well production on tubing string vibration[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2013, 15(6): 28-30.
[7]. WANG Y, FAN H, ZHANG L P, et al. An analysis of axial tubing vibration in a high pressure gas well[J]. Petroleum Science and Technology, 2011, 29(7): 708-714.
[8]. Zhi Zhang, Jiawei Wang, Ming Luo, Yanjun Li, Wandong Zhang, Jiang Wu, Wentuo Li,Effect of instantaneous shut-in on well bore integrity and safety of gas wells,Journal of Petroleum Science and Engineering 193 (2020) 107-123.
[9]. 王宇,樊洪海,张丽萍,等.高压气井完井管柱系统的轴向流固耦合振动研究[J].振动与冲击,2011,30(06):202-207.
WANG Yu,FAN Honghai,ZHANG Liping,et al. Analysis of fluid-structure interaction of completion string system in high pressure gas well[J]. Journal of Vibration and Shock,2011,30(06):202-207.
[10]. 闫行,闫怡飞,闫相祯.基于小波多尺度变换的储气库井管柱非线性振动特性研究[J].振动与冲击, 2019,38(20):51-60.
YAN Xing,YAN Yifei,YAN Xiangzhen,et al. A study on nonlinear vibration characteristics of gas storage well string based on the wavelet multi-scale transform[J]. Journal of Vibration and Shock, 2019,38(20):51-60.
[11]. 陈林.气井多相流水击数学模型的建立和求解[J].石油学报,2017,38(07):813-820.
CHEN Lin. Establishment and solution of the mathematical model of multiphase water hammer in gas wells[J]. Acta Petrolei Sinica,2017,38(07):813-820.
[12]. 唐灿.基于特征线法的气井关井水击分析[J].化工技术与开发,2018,47(01):53-55.
TANG Can. Water hammering analysis of gas well shut-in based on characteristic line method[J]. Technology & Development of Chemical Industry,2018,47(1):53-55.
[13]. 罗朝东.深井气侵关井引发的井筒多相水击压力特性研究[J].应用力学学报,2018,35(01):218-221+238.
LUO Zhaodong.Research on water hammer pressure in multiphase flow along wellhole in shutting operation[J].Chinese Journal of Applied Mechanics2018,35(1):218-221.
[14]. 熊钰,白坤森,李丹.海上HTHP气井井口关井冲击效应与井底压力的准确计算[J].水动力学研究与进展(A辑),2019,34(06):803-813.
XIAONG Yu,BAI Kunsen,LI Dan.Offshore HTHP well shut-in impact effect and accurate calculation of bottom hole pressure[J]. Chinese Journal of Hydrodynamics2019,34(6):803-813.
[15]. Ogunyemi, E. O., & Oghenewoakpo, S. (2019). Well Control: Hard or Soft Shut-In, The Onshore Experience. SPE Nigeria Annual International Conference and Exhibition. doi:10.2118/198866-ms
[16]. Assaad, W., Di Crescenzo, D., Murphy, D., & Boyd, J. (2019). Computation of Surge-Pressure-Wave Propagation During Cementation Process. SPE Drilling & Completion. doi:10.2118/194151-pa
[17]. ZHANG Zhi, WANG Jiawei, LI Yanjun, LUO Ming, ZHANG Chao,Effects of instantaneous shut-in of a high production gas well on fluid flow in tubing,Petroleum Exploration and Development, 2020, 47(3): 1-8.
[18]. Qiao D , Hui Z, Ac C , et al. Effects of perforation fluid movement on downhole packer with shock loads[J]. Journal of Petroleum Science and Engineering, 2020,195, 107566.
[19]. 王正敏. 亥姆霍兹共振器的优化理论及其实验验证[D].华南理工大学,2017.
[20]. Wang C F. On the Low-Reynolds-Number Flow in a Helical Pipe[J]. Journal of Fluid Mechanics,1981, 108:185-194.
[21]. Germano F. On the Effect of Torsion on a Helical Pipe Flow[J]. Journal of Fluid Mechanics, 1982, 125: 1-8.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}