基于改进萤火虫算法的摩擦模型参数辨识及补偿

高炳微1,2,申伟1,2,戴野1,2,叶永泰1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 69-78.

PDF(2262 KB)
PDF(2262 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 69-78.
论文

基于改进萤火虫算法的摩擦模型参数辨识及补偿

  • 高炳微1,2,申伟1,2,戴野1,2,叶永泰1,2
作者信息 +

Parameter identification and compensation of a friction model based on improved glowworm swarm optimization

  • GAO Bingwei1,2,SHEN Wei1,2,DAI Ye1,2,YE Yongtai1,2
Author information +
文章历史 +

摘要

针对影响电液伺服系统跟踪性能的非线性摩擦干扰问题,提出了一种改进的萤火虫算法对摩擦模型的参数进行辨识,通过将自适应步长和惯性因子相结合,对丧失移动能力的萤火虫进行随机优化处理,并引入全局并行搜索能力,提高了萤火虫算法的寻优能力。通过函数寻优和参数辨识测试,结果表明改进的萤火虫算法具有更好的寻优性能。最后基于辨识模型搭建摩擦状态观测器,对于仿真中速度零点的抖振现象,引入SIGMOID函数修正摩擦观测器,实验结果表明,经修正的前馈模糊控制器可以有效地抑制摩擦对伺服系统的不利影响,进一步提高伺服系统的跟踪性能。

Abstract

In order to solve the problem of nonlinear friction interference that affects the tracking performance of electro-hydraulic servo system, an improved glowworm swarm algorithm is proposed to identify the parameters of friction model by combining adaptive step size with inertia factor. The glowworm swarm which has lost the ability to move is randomly optimized, and the global parallel search ability is introduced to improve the optimization ability of the glowworm swarm algorithm. Through function optimization and parameter identification tests, the results show that the improved glowworm swarm algorithm has better optimization performance. Finally, a friction state observer is built based on the identification model. For the chattering phenomenon of velocity zero in the simulation, the SIGMOID function is introduced to modify the friction observer. The experimental results show that the modified feedforward fuzzy controller can effectively restrain the adverse effects of friction on the servo system and further improve the tracking performance of the servo system.

关键词

萤火虫算法 / 参数辨识 / 摩擦模型 / 摩擦补偿 / SIGMOID函数

Key words

Glowworm swarm optimization / parameter identification / friction model / friction compensation / SIGMOID function

引用本文

导出引用
高炳微1,2,申伟1,2,戴野1,2,叶永泰1,2. 基于改进萤火虫算法的摩擦模型参数辨识及补偿[J]. 振动与冲击, 2023, 42(6): 69-78
GAO Bingwei1,2,SHEN Wei1,2,DAI Ye1,2,YE Yongtai1,2. Parameter identification and compensation of a friction model based on improved glowworm swarm optimization[J]. Journal of Vibration and Shock, 2023, 42(6): 69-78

参考文献

[1] 曾礼平,陈齐平,宋立权. 考虑摩擦力矩和含间隙变化刚度的双质量飞轮非线性振动研究[J]. 振动与冲击,2018,37(06): 231-237.
ZENG Li-ping, CHEN Qi-ping, SONG Li-quan. Nonlinear vibration of a dual mass flywheel considering the friction torque and clearance variation characteristics of the stiffness of damping spring[J]. Journal of Vibration and Shock, 2018, 37(06): 231-237.
[2] Ruan Wei, Dong Quanlin, Zhang Xiaoyue, et al. Friction Compensation Control of Electromechanical Actuator Based on Neural Network Adaptive Sliding Mode[J]. Sensors, 2021, 21(4).
[3] Chao Ren, Xiaohan Li, Xuebo Yang, et al. Extended State Observer-Based Sliding Mode Control of an Omnidirectional Mobile Robot With Friction Compensation.[J]. IEEE Trans. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM33671572.
[4] 李明,封航,李莹月. 基于改进遗传算法的LuGre摩擦模型参数辨识及补偿[J]. 组合机床与自动化加工技术,2018(11): 38-42.
LI Ming, FENG Hang, LI Ying-yue. LuGre Friction Model Parameter Identification Based on Improved Genetic Algorithm and Friction Compensation[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(11): 38-42.
[5] 李雨青,南宫自军,刘博. 空气舵系统摩擦模型及参数识别方法研究[J]. 振动与冲击,2021,40(22): 98-103.
LI Yu-qing, NANGONG Zi-jun, LIU Bo. Friction model and parameter identification method for an air rudder system[J]. Journal of Vibration and Shock, 2021, 40(22): 98-103.
[6] 崔宁豪,张倩,李国丽. 基于切换系统理论的伺服转台摩擦建模与补偿[J]. 微电机,2019,52(10): 55-59+91.
CUI Ning-hao, ZHANG Qian, LI Guo-li. Modeling and Compensation of Servo Turntable Friction Based on Switching System Theory[J]. MICROMOYORS, 2019, 52(10): 55-59+91.
[7] 杨贻俊,侯明. 改进交叉算子遗传算法的摩擦模型辨识与补偿[J]. 微电机,2020,53(09): 54-58.
YANG Yi-jun, HOU Ming. Identification and Compensation of Friction Model Based on Improved Crossover Operator Genetic Algorithms, MICROMOTORS, 2020, 53(09): 54-58.
[8] Alexander Keck, Jan Zimmermann, Oliver Sawodny.  Friction parameter identification and compensation using the ElastoPlastic friction model[J]. Mechatronics, 2017, 47.
[9] Li Haolin, Li Guoli, Wang Qunjing, Ju Bin, Wen Yan. Friction torque field distribution of a permanent‐magnet spherical motor based on multi‐physical field coupling analysis[J]. IET Electric Power Applications, 2021, 15(8).
[10] Zhou Hailing. A multi-objective scheduling method for smart grid loads based on improved GSO algorithm[J]. Journal of Physics: Conference Series, 2021, 1907(1).
[11] 宋志强,耿聃,苏晨辉,等. 基于改进萤火虫算法优化BP神经网络的水电站厂房振动预测[J]. 振动与冲击,2017,36(24): 64-69.
SONG Zhi-qiang, GENG Dan, SU Chen-hui, et al. Vibration prediction of a hydro-power house base on IFA-BPNN[J]. Journal of Vibration and Shock, 2017, 36(24): 64-69.
[12] 左仲亮,郭星,李炜. 一种改进的萤火虫算法[J]. 微电子学与计算机,2018,35(02): 61-66.
ZUO Zhong-liang, GUO Xing, LI Wei. An Improved Swarm Optimization Algorithm[J]. MOCROELECTRONICS & COMPUTER, 2018, 35(02): 61-66.
[13] 李恒. 改进的萤火虫算法及其在PID控制器参数整定中的应用[D]. 合肥:安徽大学,2017.
[14] 陈东宁,刘一丹,姚成玉,等. 基于修正黏性摩擦LuGre模型的比例多路阀摩擦补偿[J]. 中国机械工程,2017,28(01): 62-68.
CHEN Dong-ning, LIU Yi-dan, YAO Cheng-yu, et al. Friction Compensation of Proportional Multi-way Valve Based on Modified Viscous Friction LuGre Model[J]. China Mechanical Engineering, 2017, 28(01): 62-68.
[15] Karahan Oguzhan. Design of optimal fractional order fuzzy PID controller based on cuckoo search algorithm for core power control in molten salt reactors[J]. Progress in Nuclear Energy, 2021, 139.
[16] 刘占生,张敏,张广辉等. 基于LuGre摩擦模型的叶片碰撞摩擦特性研究[J]. 振动与冲击,2012,31(12): 172-178.
LIU Zhan-sheng, ZHANG Min, ZHANG Guang-hui, et al. Characteristics of impact-contact and friction between tips of blades based on LuGre model[J]. Journal of Vibration and Shock, 2012, 31(12): 172-178.
[17] 马驰骋,罗亚军,张希农,等. 基于模糊PID控制器的变质量-柔性梁结构振动主动控制[J]. 振动与冲击,2018,37(23): 197-203+240.
MA Chi-cheng, LUO Ya-jun, ZHANG Xi-nong, et al. Vibration active control of a flexible beam with time-varying mass based on fuzzy PID controller[J]. Journal of Vibration and Shock, 2018, 37(23): 197-203+240.
[18] 王涛,张恩政,刘翠苹,等. 基于改进神经网络的机器人逆解与轨迹精度提高方法[J]. 浙江理工大学学报(自然科学版),2021,45(05): 624-632.
WANG Tao, ZHANG En-zheng, LIU Cui-ping, et al. Inverse solution and trajectory accuracy improvement method of robot based on improved neural network [J]. Journal of Zhejiang Sci-ech University (Natural Science Edition), 2021, 45(05): 624-632.

PDF(2262 KB)

Accesses

Citation

Detail

段落导航
相关文章

/