STRUCTURAL PHYSICAL PARAMETER IDENTIFICATION USING BAYESIAN ESTIMATION WITH MARKOV CHAIN MONTE CARLO METHODS

Li Xiaohua;Xie Lili;Gong Maosheng

Journal of Vibration and Shock ›› 2010, Vol. 29 ›› Issue (4) : 59-63.

PDF(1416 KB)
PDF(1416 KB)
Journal of Vibration and Shock ›› 2010, Vol. 29 ›› Issue (4) : 59-63.
论文

STRUCTURAL PHYSICAL PARAMETER IDENTIFICATION USING BAYESIAN ESTIMATION WITH MARKOV CHAIN MONTE CARLO METHODS

  • Li Xiaohua;Xie Lili;Gong Maosheng
Author information +
History +

Abstract

The linear regression models of the physical parameters of structures whose variables are the modal parameters of dominant modes are inferred from the dynamic characteristic equations of structure. Based on these models, Bayesian statistics theory is used to obtain the posterior joint probability density function (PDF) of structural physical parameters, from which the marginal PDF and optimal estimate of the physical parameters are obtained with the Markov Chain Monte Carlo (MCMC) methods. The theoretical analysis and numerical simulation of 5DOF shear building show that the approach presented can not only give the optimal estimate and associated plausibility of the physical parameters using modal data of few primary modes but also get high identification accuracy with relatively exact modal parameters used.

Key words

physical parameter identification / Bayesian estimation / Markov Chain Monte Carlo methods / modal parameters

Cite this article

Download Citations
Li Xiaohua;Xie Lili;Gong Maosheng. STRUCTURAL PHYSICAL PARAMETER IDENTIFICATION USING BAYESIAN ESTIMATION WITH MARKOV CHAIN MONTE CARLO METHODS[J]. Journal of Vibration and Shock, 2010, 29(4): 59-63
PDF(1416 KB)

Accesses

Citation

Detail

Sections
Recommended

/