CFD simulation of internal flammable gas explosion loading in cone-roof steel tanks

HU Ke1, ZHAO Yang1, WANG Zhen1,2

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (12) : 150-156.

PDF(2496 KB)
PDF(2496 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (12) : 150-156.

CFD simulation of internal flammable gas explosion loading in cone-roof steel tanks

  • HU Ke1, ZHAO Yang1, WANG Zhen1,2
Author information +
History +

Abstract

 Steel tanks are widely used for the storage of liquefied natural gas, petroleum and other flammable explosive substance. The detonation of these explosives generates high intensity shock wave within a short time, which will cause serious damage to storage tanks and bring catastrophic results. A rational evaluation of the explosion loading is the foundation for structure failure analysis and safety designing of tanks. CFD model is built up based on   turbulence model and EDC combustion model by the use of computational fluid dynamics software Fluent, which can simulate the changes of explosion flow field in tanks and obtain the overpressure time history of typical position unites. Compared with TNT equivalent method, the result of CFD model is closer to the actual situation of flammable gas explosion in tanks. Furthermore, influences of height-to-diameter ratio, concentration and species of flammable gas and initial pressure are taking into account. It is shown that, the gas reaction rate and explosion loading enhance along with the increase of height-to-diameter ratio, initial pressure and activity of flammable gas. Moreover, a stoichiometric concentration also will cause a higher explosion pressure and gas reaction rate.

Key words

steel tanks / flammable gas / explosion loading / overpressure / CFD

Cite this article

Download Citations
HU Ke1, ZHAO Yang1, WANG Zhen1,2. CFD simulation of internal flammable gas explosion loading in cone-roof steel tanks[J]. Journal of Vibration and Shock, 2015, 34(12): 150-156

References

[1] Wharton R K, Formby S A, Merrifield R. Airblast TNT equivalence for a range of commercial blasting explosives[J]. Journal of Hazardous Materials, 2000, 79(1-2): 31-39.
[2] 高建丰,杜扬,蒋新生等. 模拟油罐油气混合物爆炸实验与数值仿真研究[J]. 后勤工程学院学报,2007,23(1): 79-83.
GAO Jiang-feng, DU Yang, JIANG Xin-sheng, et al. Experimental and numerical investigations of the fuel-air mixture explosion in simulative metal oilcan[J]. Journal of Logistical Engineering University, 2007, 23(1): 79-83.
[3] Tauseef S M, Rashtchian D, Abbasi Tasneem, et al. A method for simulation of vapour cloud explosions based on compu- tational fluid dynamics (CFD)[J]. Journal of Loss Prevention in the Process Industries, 2011, 24: 638-647.
[4] Ulrich Bielert, Martin Sichel. Numerical simulation of pre- mixed combustion processes in closed tubes[J]. Combustion and Flame, 1998, 114(3): 397-419.
[5] Fairweather M, Hargrave G K, Ibrahim S S, et al. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, 116(4): 504-518.
[6] 李小东,刘庆明,白春华,等. 管道中瓦斯爆炸超压场的数值模拟[J]. 煤矿安全,2008, 39(1): 5-7.
LI Xiao-dong, LIU Qing-ming, BAI Chun-hua, et al. Numerical simulation of gas explosion overpressure field in tube[J]. Safety in Coal Mines, 2008, 39(1): 5-7.
[7] 王志荣,蒋军成,郑杨艳. 连通容器气体爆炸流场的CFD模拟[J]. 化工学报,2007, 58(4): 854-861.
WANG Zhi-rong, JIANG Jun-cheng, ZHENG Yang-yan. CFD simulation on gas explosion field in linked vessels[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 854-861.
[8] 王秋红,孙金华,何学超. 20L近球形密闭罐内可燃气体流动和火焰传播的数值模拟. 南京工业大学学报(自然科学版),2011, 33(2): 74-79.
Numerical simulation of combustible gas flow and the flame propagation in 20L nearly spherical and closed tank[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2011, 33(2): 74-79.
[9] 王福军. 计算流体动力学分析: CFD软件原理与应用[M].北京:清华大学出版社,2004.
[10] J. Kindracki, A. Kobiera, G. Rarata, et al., Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels, J. Loss Prev. Process Ind. 20(2007) 551-561.
[11]Fairweather M, Hargrave G K, Ibrahim S S, et al. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, l 16(4): 504-518.
[12] Adishchev V V, Kersey V M. Calculation of the shells of explosion chambers[J]. Combustion, Explosion, and Shock Waves, 1979, 15(6): 108-114.
[13]王震,胡可,赵阳. 拱顶钢储罐内部蒸气云爆炸冲击荷载的数值模拟[J]. 振动与冲击,2013, 32(20): 35-40.
Numerical simulation of internal vapor cloud explosion loading in dome-roof steel tanks[J]. Journal of vibration engineering, 2013, 32(20): 35-40.
[14]Van Den Berg A C, Lannoy A. Methods for vapor cloud explosion blast modeling [J]. Journal of Hazardous Materials, 1993, 34(2): 151-171.
[15]傅智敏,黄金印,臧娜. 爆炸冲击波伤害破坏作用定量分析[J]. 消防科学与技术,2009, 28(6): 390-395.
FU Zhi-min, HUANG Jin-yin, ZANG Na. Quantitative analysis for consequence of explosion shock wave[J]. Fire Science and Technology, 2009, 28(6): 390-395.
[16]Mercx W P M, Van Den Berg A C. The explosion blast prediction model in the revised CPR14E(yellow book)[J]. Process Safety Progress, 1997, 16(3): 152-159.
[17]赵衡阳. 气体和粉尘的爆炸原理[M]. 北京:北京理工大学出版社,1996.
PDF(2496 KB)

Accesses

Citation

Detail

Sections
Recommended

/