Dropping shock characteristics analysis of a cubic nonlinear system with a cantilever beam type elastic critical component with concentrated tip mass

HAO Meng1,CHEN An-jun1,2

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (15) : 162-167.

PDF(1811 KB)
PDF(1811 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (15) : 162-167.

Dropping shock characteristics analysis of a cubic nonlinear system with a cantilever beam type elastic critical component with concentrated tip mass

  • HAO Meng1,CHEN An-jun1,2
Author information +
History +

Abstract

In order to investigate the dropping shock characteristics of cantilever beam critical component with concentrated tip mass, the dynamic models of cubic nonlinear packaging systems were proposed. The Runge-Kutta method and the finite element method were applied to numerical analysis, and the effect of system parameters, such as the value of the concentrated tip mass and the frequency of the main component, is discussed. The case study showed that the maximum dropping displacement and acceleration responses of the critical component occur at its free end, while the maximum internal stress appears at its joint end. The effect of the interaction on the responses of the critical component can be ignored when its value is much less than the main component. With the increase of the value of the concentrated tip mass and/or a higher frequency of the main component, the amplitudes of the responses increase obviously. And, in the packaging design of systems with elastic critical components, the internal stress at the joint end and the relative displacement of the critical component are effective parameters to evaluate whether products are damaged. The results provide theoretical foundation for the package cushioning design of this type systems.

Key words

concentrated tip mass / cantilever beam / critical component / finite element / cubic nonlinear / dropping impact

Cite this article

Download Citations
HAO Meng1,CHEN An-jun1,2. Dropping shock characteristics analysis of a cubic nonlinear system with a cantilever beam type elastic critical component with concentrated tip mass[J]. Journal of Vibration and Shock, 2015, 34(15): 162-167

References

[1] Mindlin R D. Dynamics of packaging cushioning[J]. Bell System Technical Journal, 1945, 25:353-445.
[2] 王志伟, 胡长鹰. 洗衣机包装系统在矩形波冲击下的特性研究[J]. 包装工程, 1997, 18(2,3):14-16.
WANG Zhi-wei, HU Chang-ying. The Shock characteristics of washing machine under the action of rectangular pulse[J]. Packaging Engineering, 1997, 18(2,3):14-16.
[3] Wang Zhi-wei, Hu C Y. Shock spectra and damage boundary curves for nonlinear package cushioning system[J]. Packaging Technology and Science, 1999, 12(5): 207-217.
[4] 王军,王志伟.半正弦脉冲激励下考虑易损件的正切型包装系统冲击特性研究[J].振动与冲击,2008,27(1):167-168,173.
WANG Jun, WANG Zhi-wei. 3-Dimensional shock response spectra characterizing shock response of a tangent packaging system with critical component[J]. Journal of Vibration and Shock, 2008, 27(1):167-168,173.
[5] 段宁宁,陈安军.矩形脉冲激励下斜支承系统易损件的冲击特性研究[J].包装工程,2012,34(7):21-24.
DUAN Ning-ning, CHEN An-jun. Shock characteristics of vulnerable components of tilted support system under rectangular pulse excitation[J]. Packaging Engineering, 2012, 34(7):21-24.
[6] 孙勇, 熊彪, 王石. 多自由度缓冲包装系统的平均能量设计法[J]. 包装工程, 1997, 18(1):17-20.
SUN Yong, XIONG Biao, WANG Shi. The averaging energy design method used for a multi-freedom-degree cushioning packaging system[J]. Packaging Engineering, 1997, 18(1):17-20.
[7] 王军, 王志伟. 多层堆码包装系统冲击动力学特性研究(I): 冲击谱[J]. 振动与冲击, 2008, 27(8):106-107,120.
WANG Jun, WANG Zhi-wei. Combined shock spectrum of linear stacking packaging system[J]. Journal of Vibration and Shock, 2008, 27(8):106-107,120.
[8] 高德, 卢富德. 聚乙烯缓冲材料多自由度跌落包装系统优化设计[J]. 振动与冲击, 2012, 31(3):69-72.
GAO De, LU Fu-de. Optimization design of MDOF package cushioning system made of polyethylene[J]. Journal of Vibration and Shock, 2012, 31(3):69-72.
[9] Suhir E, Burke R. Dynamic response of a rectangular plate to a shock load, with application to portable electronic products[J]. Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on, 1994,17(3):449-460.
[10] Wong E H. Dynamics of board-level drop impact[J]. Journal of Electronic Packaging, 2005, 127(3): 200-207.
[11] Wong E H, Mai Y W, Seah S K. Board level drop impact-fundamental and parametric analysis[J]. Journal of Electronic Packaging, 2005, 127(4):496-502.
[12] Wong E H, Mai Y W. New insights into board level drop impact[J]. Microelectronics Reliability, 2006, 46(5):930-938.
[13] 奚德昌, 彭南陵. 具有简支梁弹性部件包装物品的防震[J]. 包装工程, 1989, 10(01):42-48.
XI De-chang, PENG Nan-ling. Shock proof of the packaging for elastic parts with simple beam[J]. Packaging Engineering, 1989, 10(01):42-48.
[14] 彭南陵, 奚德昌. 具有简支梁弹性部件包装物品的缓冲[J]. 南昌大学学报(工程技术版), 1994, 16(01):43-48.
PENG Na-ling, XI De-chang. Cushioning of packaged articles with an elastic element of simply supported beam[J]. Journal of Nanchang University, 1994, 16(01):43-48.
[15] 卢富德,陶伟明,高德.具有简支梁式易损部件的产品包装系统跌落冲击研究[J].振动与冲击,2012,31(5):79-81.
LU Fu-de, TAO Wei-ming, GAO De. Drop impact analysis on item packaging system with beam type elastic critical component[J]. Journal of Vibration and Shock, 2012, 31(15):79-81.
[16] 高德,卢富德.基于杆式弹性易损部件的非线性系统跌落冲击研究[J].振动与冲击,2012,31(15):7-49,59. 
GAO De, LU Fu-de. Drop impact analysis of packaging system with bar type elastic critical components[J]. Journal of Vibration and Shock, 2012, 31(15):47-49,59.
[17] Gao D, Lu F D, Chen S J. Drop impact analysis of cushioning system with an elastic critical component of cantilever beam type[J]. Mathematical Problems in Engineering,2013,  Article(379068):1-5.
[18] Rao S S. The finite element method in engineering[M]. Butterworth-heinemann, 2005.
[19] 陈安军. 非线性包装系统跌落冲击问题变分迭代法[J]. 振动与冲击, 2013, 32(18):105-107,140.
CHEN An-jun. Variational iteration method for dropping shock problem of a cubic non-linear packaging system[J]. Journal of Vibration and Shock, 2013, 32(18):105-107,140.
[20] 陈安军. 矩形脉冲激励下斜支承弹簧系统冲击特性的研究[J]. 振动与冲击, 2010, 29(10):225-227.
CHEN An-jun. Shock characteristics of a tilted support spring system under action of a rectangular pulse[J]. Journal of Vibration and Shock, 2010, 29(10):225-227.
[21] 杜绍洪. 梁自由横振动方程的有限差分方法[J]. 重庆交通大学学报(自然科学版), 2012, 31(1):6-10.
DU Shao-hong. Finite difference method of free transverse vibration equations of beams[J]. Journal of Chongqing Jiaotong University(Natural Science), 2012, 31(1):6-10.
[22] 丁科, 殷水平. 有限单元法[M]. 第2版.北京:北京大学出版社, 2012.
[23] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 第2版.北京:清华大学出版社, 1991.
PDF(1811 KB)

484

Accesses

0

Citation

Detail

Sections
Recommended

/