Research on active vibration control method of variable order oscillator

YE Yu-min1, ZHOU Lin-gen2,XIE Xing-bo3

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (16) : 119-121.

PDF(985 KB)
PDF(985 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (16) : 119-121.

Research on active vibration control method of variable order oscillator

  • YE Yu-min1, ZHOU Lin-gen2 ,XIE Xing-bo3
Author information +
History +

Abstract

In the paper, a dimensionless version of the model oscillator is studied, the equation of motion is given as . Considering that the approximation expression of variable order(VO) differential operator is more complicated, it is difficult to design directly the controller, based on the curve analysis of displacement versus time, a truncation mode of VO differential operator is proposed, a concept of variable oblivion factor is proposed, meanwhile, an optimal controller is developed for the VO differential equation under study in order to reduce the dynamic responses.

Key words

vibration control / variable oblivion factor / truncation mode

Cite this article

Download Citations
YE Yu-min1, ZHOU Lin-gen2,XIE Xing-bo3. Research on active vibration control method of variable order oscillator[J]. Journal of Vibration and Shock, 2015, 34(16): 119-121

References

[1] 孙春艳,徐伟. 分数阶导数阻尼下非线性随机振动结构响应的功率谱密度估计[J]. 应用力学学报,2013,30(3):401-405.
   SUN Chun-yan,XU Wei. Response power spectral density estimate of a fractionally damped nonlinear oscillator[J]. Chinese Journal of Applied Mechanics, 2013,30(3):401-405.
[2] 石星星,周星德,竺启泽,等.建筑结构含分数阶振动控制的最优阶次研究[J]. 振动、测试与诊断,2013,33(2):269-272.
   SHI Xing-xing, ZHOU Xing-de, ZHU Qi-ze,et al.Optimal order of fractional-order vibration control of building structure[J]. Journal of Vibration,Measurement & Diagnosis,
   2013,33(2):269-272.
[3] Saptarshi D, Amitava G, Shantanu D. Generalized frequency domain robust tuning of a family of fractional order PI/PID controllers to handle higher order process dynamics[J]. Advanced Materials Research, 2012, 403: 4859-4866.
[4] Eva K, Seenith S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions[J].  Nonlinear Analysis: Real World Applications, 2012,13(3): 1489-1497.
[5] Coimbra C F M. Mechanics with variable-order differential operators[J]. Ann. Phys. ,2003,12(11/12): 692-703.
[6] Shyu J J, Pei S C, Chan C H. An iterative method for the design of variable fractional-order FIR differintegrators[J]. Signal Processing, 2009, 89(3): 320-327.
[7] Chan C H, Shyu J J, Yang R H. Iterative design of variable fractional-order IIR differintegrators[J]. Signal Processing, 2010, 90(2): 670-678.
[8] Soon C M, Coimbra C F M, Kobayashi M H. The variable viscoelasticity oscillator[J]. Ann. Phys., 2005,14(6):378-389.
[9] Balachandran K, Park J Y, Anandhi E R. Controllability of fractional integrodifferential systems in Banach spaces[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(4): 363-367.
[10] Diaz G, Coimbra C F M. Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation[J]. Nonlinear Dynamics, 2009,56(1/2):145-157.
[11]Piotr O, Tomasz R. Variable-fractional-order dead-beat control of an electromagnetic servo[J].  Journal of Vibration and Control, 2008,14(9/10): 1457-1471.
PDF(985 KB)

Accesses

Citation

Detail

Sections
Recommended

/