Phase difference method based on asymmetrical windows

Luo Jiu-fei, Xie Zhi-jiang,Xiong Ying

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (18) : 147-153.

PDF(2160 KB)
PDF(2160 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (18) : 147-153.

Phase difference method based on asymmetrical windows

  •  Luo Jiu-fei, Xie Zhi-jiang,Xiong Ying
Author information +
History +

Abstract

This paper advances an improved method, phase difference method based on asymmetric windows, aiming at correcting the errors of parameters in discrete spectrum. The simulation shows that with proper choice of asymmetric windows, the new method can correct the errors of frequency components located in less than five DFT bins. And it can also avoid the errors induced by the mistaken location of the right spectral line. The corrected results of the theoretical signal involved in different noise conditions also exhibit a stronger robustness against additive noise when the symmetric windows are replaced with asymmetric windows.

Key words

windows function / Linear phase / spectrum correction / phase difference

Cite this article

Download Citations
Luo Jiu-fei, Xie Zhi-jiang,Xiong Ying. Phase difference method based on asymmetrical windows[J]. Journal of Vibration and Shock, 2015, 34(18): 147-153

References

[1] Ming X, Kang D. Corrections for frequency, amplitude and phase in a fast Fourier transform of a harmonic signal [J]. Mechanical Systems and Signal Processing.1996,10(2): 211-221.
[2] 丁康,谢明。离散频谱三点卷积幅值修正法的误差分析[J]。
     振动工程学报,1996,9(1): 92-98.
  Ding Kang, Xie Ming. Error Analysis for Amplitude Correction Method Using Convolution of Three Points in Discrete Spectrum[J].Journal of Vibration Engineering. 1996,1(9): 92-98.
[3] Kang D, Ming X, Xiaofei Z. Phase difference correction method for phase and frequency in spectral analysis [J]. Mechanical Systems and Signal Processing. 2000,14(5): 835-843.
[4] Dishan H. Phase error in fast Fourier transform analysis [J]. Mechanical systems and signal processing. 1995,9(2): 113-118.
[5] Rife DC, Vincent G. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones [J]. Bell Syst Tech J. 1970,49(2):197-228.
[6] Jain VK, Collins WL, Davis DC. High-accuracy analog measurements via interpolated FFT [J]. Instrumentation and Measurement, IEEE Transactions on. 1979,28(2):113-122.
[7] Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals [J]. Instrumentation and Measurement, IEEE Transactions on. 1983,32(2):350-355.
[8] Narduzzi C, Offelli C. Real-time high accuracy measurement of multifrequency waveforms [J]. Instrumentation and Measurement, IEEE Transactions on. 1987,1001(4):964-970.
[9] Andria G, Savino M, Trotta A. Windows and interpolation algorithms to improve electrical measurement accuracy [J]. Instrumentation and Measurement, IEEE Transactions on. 1989,38(4):856-863.
[10] Schoukens J, Pintelon R, Van Hamme H. The interpolated fast Fourier transform: a comparative study [J]. Instrumentation and Measurement, IEEE Transactions on. 1992,41(2):226-232.
[11] Offelli C, Petri D. The influence of windowing on the accuracy of multifrequency signal parameter estimation [J]. Instrumentation and Measurement, IEEE Transactions on. 1992,41(2):256-261.
[12] Belega D, Dallet D. Multifrequency signal analysis by Interpolated DFT method with maximum sidelobe decay windows [J]. Measurement. 2009,42(3):420-426.
[13] Aboutanios E, Mulgrew B. Iterative frequency estimation by interpolation on Fourier coefficients [J]. Signal Processing, IEEE Transactions on. 2005,53(4):1237-1242.
[14] Belega D, Dallet D, Petri D. Statistical description of the sine-wave frequency estimator provided by the interpolated DFT method [J]. Measurement. 2012,45(1):109-117.
[15] Borkowski J, Mroczka J. LIDFT method with classic data windows and zero padding in multifrequency signal analysis [J]. Measurement. 2010,43(10):1595-1602.
[16] Belega D, Dallet D, Petri D. Accuracy of sine wave frequency estimation by multipoint interpolated DFT approach [J]. Instrumentation and Measurement, IEEE Transactions on. 2010,59(11):2808-2815.
[17] Belega D, Dallet D. Amplitude estimation by a multipoint interpolated DFT approach [J]. Instrumentation and Measurement, IEEE Transactions on. 2009,58(5):1316-1323.
[18] Duda K. DFT interpolation algorithm for Kaiser–Bessel and Dolph–Chebyshev windows [J]. Instrumentation and Measurement, IEEE Transactions on. 2011,60(3):784-790.
[19] 刘进明,应怀樵。FFT谱连续细化分析的富里叶变换法[J]。振动工程学报,1995,8(2):162-166。
     Liu Jin-ming, Ying Huai-qiao. Zoom FFT Spectrum by Fourier   Transform [J]. Journal of Vibration Engineering, 1995,8(2): 162-166.
[20] 陈奎孚,焦群英,高小榕。提高FF谱质量的一种新方法[J]振动、测试与诊断,1998,18(2):216-220。
     Chen Kui-fu,Jiao Qun-ying,Gao Xiao-rong. A New Approach to the Improvement of FFT Spectrum Qual itity [J]. Journal of Vibration, Measurement & Diagnosis,1998,18(2):216 -220.
[21] 丁康,谢明,杨志坚。离散频谱分析校正理论与技术[M]。北京:科学出版社,2008。
     Ding Kang, Xie Ming, Yang Zhi-jian. The theory and technology of discrete spectrum correction [M]. Beijing: Science Press,  2008.
[22] Offelli C, Petri D. A frequency-domain procedure for accurate real-time signal parameter measurement [J]. Instrumentation and Measurement, IEEE Transactions on. 1990,39(2):363-368.
[23] 丁康,江利旗。离散频谱的能量重心校正法[J]。振动工程学报,2001,14(3):354-358。
     Ding Kang, Jiang Li-qi. Energy centrobaric correction method for discrete spectrum [J]. Journal of Vibration Engineering. 2001,14(3):354-358.
[24] 丁康,郑春松,杨志坚。离散频谱能量重心法频率校正精度分析及改进[J]。机械工程学报,2010,46(5):43-48。
     Ding Kang, Zheng Chun-song, Yang Zhi-jian. Frequency Estimation Accuracy Analysis and Improvement of Energy Barycenter Correction Method for Discrete Spectrum [J]. Journal of Mechanical Engineering. 2010,46(5):43-48.
[25] Belega D, Dallet D, Petri D. Accuracy of the normalized frequency estimation of a discrete-time sine-wave by the energy-based method [J]. Instrumentation and Measurement, IEEE Transactions on. 2012,61(1):111-121.
[26] Huibin L, Kang D. Energy based signal parameter estimation method and a comparative study of different frequency estimators [J]. Mechanical Systems and Signal Processing. 2011,25(1):452-464.
[27] 丁康,林慧斌。离散频谱四点能量重心校正法及抗噪性能分析[J]。振动工程学报,2009,22(6):659-664。
     Ding Kang, Lin Hui-bing. Anti-noise performance of energy centrobaric correction method using four points for discrete spectrum[J].Journal of Vibgration Engineering.2009,22(6): 659-664.
[28] McMahon D, Barrett R. An efficient method for the estimation of the frequency of a single tone in noise from the phases of discrete Fourier transforms [J]. Signal Processing. 1986,11(2):169-177.
[29] 朱利民,贾民平,钟秉林。转子振动监测中的采样与相位误差补偿[J]。东南大学学报,1997,27(2):115-120。
     Zhu Li-min, Jia Min Ping,Zhong Bing-ling. Sampling and Phase Error Compensation Methods in Rotor Vibration Monitoring [J]. Journal of Southeast University. 1997, 27(2):115-120.
[30] Santamaria I, Pantaleon C, Ibanez J. A comparative study of high-accuracy frequency estimation methods [J]. Mechanical Systems and Signal Processing. 2000,14(5):819-834.
[31] 谢明,张晓飞,丁康。频谱分析中用于相位和频率校正的
     相位差校正法[J]。振动工程学报,1999,12(4):444-459。
     Xie Ming,Zhang Xiao-fei,Ding Kang. A phase difference correction method for phase and frequency correction in spectral analysis [J]. Journal of Vibration Engineering. 1999,12(4): 444-459.
[32] 丁康,钟舜聪。通用的离散频谱相位差校正方法[J]。电子学报,2003,31(1):142-145。
     Ding Kang, Zhong Shun-cong. A universal phase difference correcting methods on discrete spectrum [J]. Acta Electronica Sinica. 2003,31(1):142-145.
[33] 黄云志,徐科军。基于相位差的频谱校正方法的研究[J]。振动与冲击,2005,24(2):77-79。
     Huang Yun-zhi, Xu Ke-jun. Study on the spectrum correcting method based on phase difference [J]. Journal of Vibration and Shock. 2005,24(2):77-79.
[34] 丁康,朱小勇,谢明,钟舜聪,罗江凯。离散频谱综合相位差校正法[J]。振动工程学报,2002,15(1):114-117。
     Ding Kang, Zhu Xiao-yong, Xie Ming, Zhong Shun-cong, Luo Jiang-kai. Synthesized correcting method of phase difference on discrete spectrum [J]. Journal of Vibration Engineering. 2002,15(1):114-117.
[35] Zhu L-M, Li H-X, Ding H, Xiong Y-L. Noise influence on estimation of signal parameter from the phase difference of discrete fourier transforms [J]. Mechanical systems and signal processing, 2002,16:991-1004
[36] Florencio DA, editor. On the use of asymmetric windows for   reducing the time delay in real-time spectral analysis [C]. Acoustics, Speech, and Signal Processing, 1991 ICASSP-91 . 1991 International Conference on, 1991: IEEE.
[37] Zivanovic M, Carlosena A. On asymmetric analysis windows for detection of closely spaced signal components [J]. Mechanical systems and signal processing. 2006,20(3): 702-717.
[38] Shannon BJ, Paliwal KK. Feature extraction from higher-lag autocorrelation coefficients for robust speech recognition [J]. Speech Communication. 2006,48(11):1458-1485.
[39] 霍兵勇,易伟建.密集频率数字信号的判定和校正方法[J].振动与冲击,2013,32(2):171-174.
     HUO Bing-yong,YI Wei-jian.Identification and correction for a digital signal with close frequencies[J]. Journal of Vibration and Shock,2013,32(2):171-174.
PDF(2160 KB)

896

Accesses

0

Citation

Detail

Sections
Recommended

/