Experimental investigation of sloshing impact pressure for tank structural design

CHEN Xiao-dong 1,3 WEI Zhi-jun 1,2 YUE Qian-jin 1 RUAN Shi-lun 1 ZHAO Xiao-xi 1

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (18) : 171-176.

PDF(1895 KB)
PDF(1895 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (18) : 171-176.

Experimental investigation of sloshing impact pressure for tank structural design

  • CHEN Xiao-dong 1,3  WEI Zhi-jun 1,2  YUE Qian-jin 1  RUAN Shi-lun 1  ZHAO Xiao-xi 1
Author information +
History +

Abstract

Sloshing impact pressure is a key issue in the structural design of the membrane type Liquefied Nature Gas (LNG) carriers. The impact sloshing load includes the magnitude, rise time, duration and skewness. The large-scaled sloshing model experimental method is the most reliable approach to determine impact loads. A series of tests in a 2D rectangular tank subjected to an irregular excitation were performed on the hexapod test rig. The experimental results show that due to interaction between liquid and gas, the peak pressure exhibits large magnitude and short rise time, which might induce large structural dynamic response. The key parameters are analyzed by a statistical method. An idealized triangular impact pressure for the long-term irregular excitation was quantitatively provided. The simplified model consists of the magnitude, rise time, duration and skewness of the impact pressure. This could be a reference for the LNG tank structural design.

Key words

sloshing load / model test / the parameters of the impact load / idealized triangular impact model

Cite this article

Download Citations
CHEN Xiao-dong 1,3 WEI Zhi-jun 1,2 YUE Qian-jin 1 RUAN Shi-lun 1 ZHAO Xiao-xi 1. Experimental investigation of sloshing impact pressure for tank structural design[J]. Journal of Vibration and Shock, 2015, 34(18): 171-176

References

[1] Veritas D N. Sloshing analysis of LNG membrane tanks. Classification notes, Oslo, Norway, 2006.
[2] American Bureau of Shipping. Strength Assessment of Membrane-type LNG Containment Systems under Sloshing Loads, Guidance Notes. 2009.
[3] Lloyd’s Register. Sloshing Assessment Guidance Document for Membrane Tank LNG Operations. Guidance Notes Version 2.0. 2009.
[4] Faltinsen O M, Timokha A N. Sloshing[M]. Cambridge:  Cambridge University Press, 2009.
[5] 王德禹. 液化天然气船液舱的晃荡[J]. 计算机辅助工程, 2010, 19(3): 1-4.
WANG D Y. Sloshing in LNG carriers tanks[J]. Computer Aided Engineering, 2010, 19(3): 1-4.
[6] 王德禹, 金咸定. 液舱流体晃荡的模型试验[J]. 上海交通大学学报, 1998, 32(11): 114-117.
WANG D Y, JIN X D. On Model Experiment of Sloshing in Tanks[J]. Journal of Shanghai Jiaotong University, 1998, 32(11): 114-117.
[7] 卫志军, 岳前进, 阮诗伦, 等. 矩形液舱晃荡冲击载荷的试验机理研究[J]. 船舶力学, 2012, 16(8): 885-892.
WEI Z J, YUE Q J, RUAN S L, et al. An experimental investigation of liquid sloshing impact load on a rectangular tank [J]. Ship Mechanics, 2012, 16(8): 885-892.
[8] 朱仁庆.液体晃荡及其与结构的相互作用 [D]. 无锡: 中国船舶科学研究中心, 2002.
ZHU R Q. Time domain simulation of liquid sloshing and its interaction with flexible structure[D]. Wuxi: China Ship Scientific Research Center, 2002.
[9] 朱仁庆, 吴有生. 船舶液体晃荡动力学的研究方法及进展[J]. 华东船舶工业学院学报, 1999, 13(1): 45-50.
ZHU R Q, WU Y S. Study and advance of liquid sloshing dynamics of ship[J]. Journal of East China Shipbuilding Institute, 1999, 13(1): 45-50.
[10] 刘泽民. 关于船舱中液体晃荡问题[J]. 哈尔滨船舶工程学院学报, 1992, 13(3): 241-249.
LIU Z M. On liquid sloshing in partially filled tanks[J]. Journal of Harbin Shipbuilding Engineering Institute, 1992, 13(3): 241-249.
[11] Pillon B, Marhem M, Leclère G, et al. Numerical approach for structural assessment of LNG containment systems[C]//Proceedings of 19th International Offshore and Polar Engineering Conference, June 21-26, Osaka, Japan. 2009.
[12] Dobashi H, Usami A. Dynamic Amplification Factor of NO96 Insulation Structures of Membrane System[C]//The Twenty-second International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2012.
[13] Yoo M J, Lee S J, Kim S C, et al. Characteristics of Dynamic Response of Mark III LNG Containment Subjected to Idealized Triangular Sloshing Impact[C]//The Twenty-first International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2011.
[14] Graczyk M, Moan T, Rognebakke O. Probabilistic analysis of characteristic pressure for LNG tanks[J]. Journal of offshore mechanics and Arctic engineering, 2006, 128(2): 133-144.
[15] Kim Y, Kim S Y, Yoo W J. Statistical evaluation of local impact pressures in sloshing[C]//Proceedings of the 20th international offshore and polar engineering conference, ISOPE, Beijing, China. 2010.
[16] Graczyk M, Moan T. A probabilistic assessment of design sloshing pressure time histories in LNG tanks[J]. Ocean engineering, 2008, 35(8): 834-855.
[17] Loysel T, Chollet S, Gervaise E, et al. Results of the First Sloshing Model Test Benchmark[C]//Proceedings of the 22th International Offshore and Polar Engineering Conference. 2012: 17-22.
[18] Faltinsen O M, Firoozkoohi R, Timokha A N. Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: Quasilinear modal analysis and experiments[J]. Physics of Fluids (1994-present), 2011, 23(4): 042101.
[19] 卫志军, 岳前进, 张文首, 等. 大尺度储舱内流体晃荡砰击压力的测量方法研究[J]. 中国科学:物理 力学 天文学, 2014,44:746-758
WEI Z J, YUE Q J, ZHANG W S, et, al. Experimental investigation of violent slamming pressure in large-scaled tank[J]. Sci Sin-Phys, Mech Astron, 2014, 44:746-758
[20] Repalle N, Truong T, Thiagarajan K, et al. The effect of sampling rate on the statistics of impact pressure[C]//ASME Conf Proc. 2010, 49095: 565-572.
PDF(1895 KB)

775

Accesses

0

Citation

Detail

Sections
Recommended

/