Development for Vision-based Displacement Test method

CHEN Su 1,2, CHEN Guo-xing2, HAN Xiao-jian2,QI Cheng-zhi3, DU Xiu-li4

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (18) : 73-78.

PDF(3289 KB)
PDF(3289 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (18) : 73-78.

Development for Vision-based Displacement Test method

  • CHEN Su 1,2, CHEN Guo-xing2, HAN Xiao-jian2,QI Cheng-zhi3, DU Xiu-li4
Author information +
History +

Abstract

Make comparative analysis of circle detection effect, algorithm application range and calculation efficiency according to different circle detection algorithms. Base on circle detection algorithms, vision-based dynamic displacement test method were developed and applied to the large-scale shaking table test. The results show that: Both Hough transform circle detection algorithm and optimal fitting circle detection algorithm have good performance in circle parameters detection. Hough transform circle detection algorithm is more suitable for testing operating conditions in which the test background is simple or need testing multiple target circles at once. Optimal fitting circle detection method is more suitable for testing operating conditions in which the test background is complex. By applying vision-based displacement testing method to large-scale shaking table test, the deformation of model soil foundation was tested. Vision-based displacement test method can effectively solve the problem of displacement testing in complex test conditions .

Cite this article

Download Citations
CHEN Su 1,2, CHEN Guo-xing2, HAN Xiao-jian2,QI Cheng-zhi3, DU Xiu-li4. Development for Vision-based Displacement Test method[J]. Journal of Vibration and Shock, 2015, 34(18): 73-78

References

[1]  Dhiman Karmakar, C. A. Generation of new points for training set and feature-level fusion in multimodal biometric identification [J]. Machine Vision and Applications, 2014(25): 477-487.
[2]  Andrew W. L. Dickinson, Purang Abolmaesumi, David G. Gobbi, Parvin Mousavi. SimITK: Visual Programming of the ITK Image-Processing Library within Simulink. [J]. J Digit Imaging(Publish on line).
[3]  贾慧星,章毓晋. 车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报. 2007,33(1): 84-90.
 JIA Hui-Xing, ZHANG Yu-Jin, et al. A Survey of Computer Vision Based Pedestrian Detection for Driver Assistance Systems [J]. ACTA AUTOMATICA SINICA. 2007,33(1): 84-90.
[4]  杨会臣,贾金生,王海波. 高速摄影测量在振动台动力模型试验中的应用[J].水电能源科学.2012(1):153-155.
 YANG Hui-chen, JIA Jin-sheng, WANG Hai-bo. Application of High Speed Photogrammetry to Vibrating Platform Dynamic Model Test [J]. Water Resources and Power. 2012(1): 153-155.
[5]  任伟中,寇新建,凌浩美. 数字化近景摄影测量在模型试验变形测量中的应用[J].岩石力学与工程学报. 2004(3): 436-440.
 Ren Wei-zhong, Kou Xing-jian, Ling Hao-mei. Application of Digital Close-range Photogrammetry in Deformation Measurement of Model Test [J]. Chinese Journal of Rock Mechanics and Engineering. 2004(3): 436-440.)
[6]  陈佳娟, 纪寿文, 李娟,等. 采用计算机视觉进行棉花虫害程度的自动测定[J].农业工程学报. 2001,17(2): 157-160.
 Chen Jia-juan, Ji Shou-wen Li Juan, et al. Automatic Measurement of Danger Degree of Cotton Insect Pests Using Computer Vision[J]. Transactions of the CSAE. 2001,17(2): 157-160.
[7]  Hough P V C. Methods and means for recognizing complex patterns: US, 3069654 [P]. [1962-12-18].
[8]  Rachid Deriche. Using Canny's Criteria to Derive a Recursively Implemented Optimal Edge Detector[J]. International Journal of Computer Vision, 1987, 167-187.
[9]  Cohen, J. Statistical power analysis for the behavioral sciences[M]. Lawrence Erlbaum, New Jersey, 1988.
[10]  陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J].岩土工程学报, 2010, 32(1): 89-97.
CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97.
[11]  Hyndmana, R.J, Koehlerb, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679.
PDF(3289 KB)

895

Accesses

0

Citation

Detail

Sections
Recommended

/