Hybrid floating raft systems with actuator output constraints for marine ships

YANG Ming-yue,SUN Ling-ling,WANG Xiao-le

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (20) : 191-197.

PDF(1633 KB)
PDF(1633 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (20) : 191-197.

Hybrid floating raft systems with actuator output constraints for marine ships

  • YANG Ming-yue,SUN Ling-ling,WANG Xiao-le
Author information +
History +

Abstract

In order to improve the low-frequency performance of floating raft systems which are always used in marine ships, a feedforward active control solution is proposed. The analytical model which consisted of complex excitations, distributed parameter isolators, a flexible floating raft and a non-rigid foundation is established. Considering the output threshold of actual actuators, the general mathematic description of the dynamic transfer characteristics of the overall system is given by using the mobility matrix approach. It is shown that moment excitations played an important role in the vibration transfer process. Coupling interactions between the elastic raft and distribution parameter isolators can lead to a deterioration of performance in the high-frequency domain. The upper active control strategy can achieve good effect during rigid-body modal frequencies, and the prominent advantage of the lower active control strategy is mainly reflected in higher frequencies. However, the full active control strategy can realize the optimal control of vibra-acoustic power among broadband domain.

 

Key words

vibration and wave / floating raft systems / mobility / active vibration isolation / feedforward control

Cite this article

Download Citations
YANG Ming-yue,SUN Ling-ling,WANG Xiao-le. Hybrid floating raft systems with actuator output constraints for marine ships[J]. Journal of Vibration and Shock, 2015, 34(20): 191-197

References

[1] 何琳,徐伟. 舰船隔振装置技术及其进展[J].声学学报, 2013, 38(2): 128-136.
 HE Lin, XU Wei. Naval vessel machinery mounting technology and its recent advances[J]. Acta Acustica, 2013, 38(2): 128-136.
[2] Hansen C H, Snyder S D, Qiu X J, et al. Active control of noise and vibration, second edition[M]. Boca Raton: CRC Press, 2012.
[3]  牛军川,宋孔杰. 船载柴油机浮筏隔振系统的主动控制策略研究[J]. 内燃机学报, 2004, 22(3): 252-256.
 NIU Jun-chuan, SONG Kong-jie. Active control strategies of a floating raft isolation system for marine diesel engines[J]. Transactions of CSICE, 2004,22(3): 252-256.
[4] Niu J, Song K, Lim C W. On active vibration isolation of floating raft system[J]. Journal of Sound and Vibration, 2005, 285(1/2): 391-406.
[5] Liu L, Tan K K, Guo Y, et al. Active vibration isolation based on model reference adaptive control[J]. International Journal of Systems Science, 2014, 45(2): 97-108.
[6] Ma X, Jin G, Liu Z. Active structural acoustic control of an elastic cylindrical shell coupled to a two-stage vibration isolation system[J]. International Journal of Mechanical Sciences,2014,79: 182-194.
[7] Pan J, Hansen C H. Active control of power flow from a vibrating rigid body to a flexible panel through two active isolators[J]. Journal of the Acoustical Society of America, 1993, 93(4): 1947-1953.
[8] Gardonio P, Elliott S J, Pinnington R J. Active isolation of structural vibration on a multiple-degree-of-freedom system, Part II: effectiveness of active control strategies[J]. Journal of Sound and Vibration, 1997, 207(1): 95-121.
[9] Liu X, Jin G, Wang Y, et al. Active control of a machine suspension system supported on a cylindrical shell[J]. Journal of Computational Acoustics, 2013, 21(3):1-19.
[10] 徐洋,华宏星,张志谊. 舰用主动柔性耦合隔振系统建模研究[J]. 工程力学, 2008, 25(12): 223-228.
 XU Yang, HUA Hong-xing, ZHANG Zhi-yi, et al. Study on modeling methodology of naval active flexible coupled isolation system[J]. Engineering Mechanics, 2008,25(12): 223-228.
[11] Sun L, Sun W, Song K, et al. Effectiveness of a passive-active vibration isolation system with actuator constraints[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3):567-574.
[12] Jenkins M D, Nelson P A, Pinnington R J, et al. Active isolation of periodic machinery vibrations[J]. Journal of Sound and Vibration, 1993, 166(1):117-140.
[13] 陈斌,李嘉全,邵长星,等. 浮筏多通道协调振动主动控制实验研究[J]. 实验力学, 2008, 23(3): 248-254.
 CHEN Bin, LI Jia-quan, SHAO Chang-xing, et al. Experimental study of multi-channel cooperating active vibration control on floating raft[J]. Journal of Experimental Mechanics, 2008, 23(3): 248-254.
[14] 周刘彬,杨铁军,张攀,等. 基于弹性舱段结构的浮筏主动隔振系统实验研究[J]. 振动与冲击, 2013, 32(17): 145-149.
 ZHOU Liu-bin, YANG Tie-jun, ZHANG Pan, et al. Tests for an active floating raft vibration isolation system based on a flexible hull structure[J]. Journal of Vibration and Shock, 2013, 32(17): 145-149.
[15] Beijers C. A modeling approach to hybrid isolation of structure-borne sound[D]. Enschede: University of Twente, 2005.
[16] 孙玲玲,宋孔杰. 复杂机械系统多维耦合振动传递矩阵分析[J]. 机械工程学报, 2005, 41(4): 38-43.
 SUN Ling-ling, SONG Kong-jie. Transmission matrix method for multi-dimensional vibration analysis of complex mechanical systems[J]. Journal of Mechanical Engineering, 2005, 41(4):38-43.
[17] Fahy F, Walker J. Advanced applications in acoustics, noise and vibration[M]. New York: Spon Press, 2004.
[18] Fuller C R, Elliott S J,Nelson P A. Active control of vibration [M]. London: Academic Press,1997.
[19] Qiu X J, Hansen C H. A study of time-domain FXLMS algorithms with control output constraint[J]. Journal of the Acoustical Society of America, 2001, 109(6): 2815-2823.
[20] Sanderson M A. Vibration isolation: moments and rotations included[J]. Journal of Sound and Vibration, 1996, 198(2):171-191.
[21] Dylejko P G, MacGillivray I R. On the concept of a transmission absorber to suppress internal resonance[J]. Journal of Sound and Vibration, 2014, 333(10):2719-2734.
PDF(1633 KB)

938

Accesses

0

Citation

Detail

Sections
Recommended

/