Piezoelectric disk with spiral interdigitated electrodes (SIEDs) can produce in-plane torsion with advantages of simple structure, convenient manufacture, and reliable performance, which can be applied to ultrasonic motors, optical scanners, viscometers, and many others. However, because of the complex variation of polarizing direction for the piezoceramic material between surface SIDEs, it brings great difficulties for the electromechanical coupling analysis and optimization of the transducer. In this paper, utilizing the idea of coordinate transformation with the aid of finite element method, the piezoelectric disk is divided into a number of sub-volumes. The material parameters are defined in the local coordinate systems determined from the analysis of polarizing electric field. Thus, the coupling simulations of piezoelectric transducer can be achieved in the complex polarization condition. Optimizing the simulation processes in finite element software ANSYS, the radial distribution of static torsional displacement and frequency response of dynamic admittance are investigated. In comparison with the experimental results, the feasibility and effectiveness of proposed method are validated.
Key words
piezoceramic /
discal transducer /
spiral interdigitated electrodes /
in-plane torsion /
Finite element simulation;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Kim J, Kang B. Performance test and improvement of piezoelectric torsional actuators [J]. Smart Materials and Structures, 2001, 10(4): 750-757.
[2] 王 剑,郭吉丰. 径向-扭转振动复合型超声波电机的理论与实验研究[J]. 振动与冲击,2008, 27(9): 162-163.
WANG Jian, GUO Ji-feng. A radial-torsional vibration hybrid type ultrasonic motor [J]. Journal of Vibration and Shock, 2008, 27(9): 162-163.
[3] Pearce D H, Seffen K A, Button T W. Net shape formed spiral and helical piezoelectric actuators [J]. Journal of Materials Science, 2002, 37(15): 3117-3122.
[4] Pan C L, Feng Z H, Ma Y T, et al. Small torsional piezoelectric fiber actuators with helical electrodes [J]. Applied Physics Letters, 2008, 92(1): 635-640.
[5] 芦志强,潘成亮,马玉婷. 基于螺旋叉指电极的压电圆盘扭转致动器[J]. 压电与声光,2010, 32(5): 758-761.
LU Zhi-qiang, PAN Cheng-liang, MA Yu-ting. Piezoelectric disk torsional actuator with spiral interdigitated electrodes [J]. Piezoelectrics and Acoustooptics, 2010, 32(5): 758-761.
[6] 刘祥建,陈仁文. Rainbow型压电换能结构的有限元分析与实验[J]. 光学精密工程,2011, 19(4): 789-796.
Liu Xiang-jian, Chen Ren-wen. Finite element analysis and experiments on rainbow shape piezoelectric energy transferring elements [J]. Optics and Precision Engineering, 2011, 19(4): 789-796.
[7] 卢义刚,颜振方. Cymbal压电发电换能器的有限元分析[J]. 振动与冲击,2013, 32(6): 157-162.
LU Yi-gang, YAN Zhen-fang. Finite element analysis on energy harvesting with cymbal transducer [J]. Journal of Vibration and Shock, 2013, 32(6): 157-162.
[8] Agbossou A, Pan C L, Zhang Q, et al. Piezoelectric tube with helical electrodes: Numerical analysis of actuator and energy harvesting devices [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(10): 1245-1256.
[9] 栾桂冬,张金铎,王仁乾. 压电换能器和换能器阵(修订版)[M]. 北京:北京大学出版社,2005.
Luan Gui-don,Zhang Jin-duo,Wang Ren-qian. Piezoelectric transducers and arrays [M]. Beijing: Peking University Press, 2005.
[10] 李海峰,吴冀川,刘建波,等. 有限元网格剖分与网格质量判定指标[J]. 中国机械工程,2012, 23(3): 368-377.
Li Hai-feng, Wu Ji-chuang, Liu Jian-bo, et al. Finite element mesh generation and decision criteria of mesh quality [J]. China Mechanical Engineering, 2012, 23(3): 368-377.
[11] 宋少云,尹芳. 有限元网格划分中的圣维南原理及其应用[J]. 机械设计与制造,2012, 8: 63-65.
Song Shao-yun,Yin Fang. Sain vaint principle of meshing in finite element method and its application [J]. Machinery Design and Manufacture, 2012, 8: 63-65.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}