Multiaxial equivalent stress Amendment Algorithm based on classical Von Mises stress

Bai Chunyu,Qi Piqian,Mu Rangke,Cao Minghong,

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (23) : 166-170.

PDF(2349 KB)
PDF(2349 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (23) : 166-170.

Multiaxial equivalent stress Amendment Algorithm based on classical Von Mises stress

  • Bai Chunyu,Qi Piqian ,Mu Rangke,Cao Minghong,
Author information +
History +

Abstract

The classical Von Mises stress equivalent process is built by the concept of static equivalent stress and extended to dynamic conditions, furthermore some problems will appear, even an error result will be produced if using the equivalent criterion mechanically.In this paper ,the authors introduce some amendment algorithms based on classical Von Mises stress, the amendatory Von Mises equivalent stress power spectral density has the same distribution as the component of stress ,both of the stress response magnitude located near the mode frequency, this is reasonable for the structural dynamic feature and the circular load feature, and the modified stress is regarded as a Gaussian process, which can estimate fatigue life based existing models in the frequency domain.

Key words

vibration fatigue / Von Mises stress / life prediction / power spectral density

Cite this article

Download Citations
Bai Chunyu,Qi Piqian,Mu Rangke,Cao Minghong,. Multiaxial equivalent stress Amendment Algorithm based on classical Von Mises stress[J]. Journal of Vibration and Shock, 2015, 34(23): 166-170

References

[1] Brown MW,Gao N.Fatigue-life predictions including the effects of hold time and multiaxial loads on crack-coalescence behavior[J]. Strength of Materials,2000,32(6):502-516.
[2] Gough. Crystaline structure in relation to failure of metals especially fatigue.Proc.ASTM33 ,1933,20(8):3-20.
[3] 白春玉,齐丕骞,多轴应力响应下结构振动疲劳寿命预估的时域方法研究[J].机械科学与技术,2013,32(2):289-293.
Bai Chunyu,Qi Piqian,Time domain analysis for the estimation of structure vibration fatigue life under multiaxial stress response[J].Mechanical Science And Technology For Aerospace Engineering, 2013,32(2):289-293.
[4] Sines G. Behaviour of metals under complex stresses. In: Sines G, Waisman JL,editors. Metal Fatigue, McGraw-Hill, New York, 1959, pp.145~169.
[5] F.Cosmi. An application of the cell method to multiaxial fatigue asseement of a test component under different criteria[J].2010:148-158.
[6] F.Cosmi. Numerical solution of plane elasticity problems with the cell method.[J] CMES 2, 365–372.
[7] Pioli,D. Studio e sviluppo di metodi per la valutazione del comportamento a fatica di sistemi meccanici.[J],Universonsita degli Studi di Perugia.
[8] 李静. 金属多轴疲劳寿命预测模型研究[D]. 西安:空军工程大学,2008.
LI Jing. Study on the multiaxial fatigue life prediction model for metallic materials[D]. Xi’an:Air Force Engineering University, 2008.
[9] N.W.M.BishoP and Frank Sherratt. Fatigue life Prediction from power spectral density data,Part2: recent developments. Environmental Engineenng, 1989, 2(2):11-15 .
[10] 金奕山,李琳.随机振动结构Von Mises应力过程峰值概率密度函数的研究[J].应用力学学报,2006,12(4):645-649.
Jin YiShan, LiLin.Peak probability density function of Von Mises stress process[J].Chinese Journal Of Applied Mechanics, 2006,12(4):645-649.
[11] 丁智平,杨荣华,黄友剑.变刚度橡胶球铰的刚度特性与疲劳寿命分析[J].振动与冲击,2014,33(2):99-104.
DING Zhi-ping,YANG Rong-hua,WANG You-jian. Analysis on the stiffness and fatigue life of variable stiffness rubber bushing[J].Journal of Vibration and Shock,2014,33(2):99-104. 
PDF(2349 KB)

1385

Accesses

0

Citation

Detail

Sections
Recommended

/