Block adaptive backstepping control for high-speed motorized spindle

Wen-tao Shan1, Xiao-an Chen2

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (23) : 99-105.

PDF(1665 KB)
PDF(1665 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (23) : 99-105.

Block adaptive backstepping control for high-speed motorized spindle

  • Wen-tao Shan1, Xiao-an Chen2
Author information +
History +

Abstract

According to high-speed motorized spindle (HSMS) is a complex controlled object of uncertainty, nonlinear and strong coupling, this paper proposes a block adaptive backstepping control for it based on global RBF neural network. Backstepping control laws and parameter updating laws are derived using Lyapunov theory, which guarantees the stability of the whole spindle system. With the proposed block adaptive backstepping controller, the rotor speed and flux reference signals tracking of the high-speed motorized spindle possesses the advantages of nice transient control performance and robustness to the load torque disturbance and parametric uncertainty. Simulation results validate the effectiveness and rationality of the proposed control scheme.

Key words

motorized spindle / RBF neural network / backstepping control / Nonlinearity

Cite this article

Download Citations
Wen-tao Shan1, Xiao-an Chen2. Block adaptive backstepping control for high-speed motorized spindle[J]. Journal of Vibration and Shock, 2015, 34(23): 99-105

References

[1]  Polycarpou, M.M.. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transactions on Automatic Control, 2006, 41(3):447-451.
[2]  Chiman Kwan, Lewis, F.L., Dawson, D.M.. Robust neural-network control of rigid-link electrically driven robots[J]. IEEE Transactions on Neural Networks,1998. 9(4):581-588.
[3]  S.S. GE, C. WANG,T. H. LEE. Adaptive backstepping control of a class of chaotic systems[J],International Journal of Bifurcation and Chaos,2000,10(5):1149-1157.
[4]  T. Zhang, S.S. Ge,C.C. Hang. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica,2000. 36(12): 1835-1846.
[5]  L Karsenti,F Lamnabhi-Lagarrigue,G Bastin. Backstepping technique extended to nonlinear parameterization[J]. System and Control Letters. 1996. San Francisco,USA.
[6]  T Knohl, H Unbehauen.ANNNAC extension of adaptive backstepping algorithm with artificial neural networks[J]. IEEE Proceedings Control Theory and Applications. 2000,174(2): 177-183.
[7]  Hua Deng, Han-Xiong Li, Yi-hu Wu. Feedback-Linearization-Based Neural Adaptive Control for Unknown Nonaffine Nonlinear Discrete-Time Systems[J]. IEEE Transactions on Neural Networks,2008. 19(9):1615-1625.
[8]  Ge,S.S. Chenguang Yang,Tong Heng Lee. Adaptive Predictive Control Using Neural Network for a Class of Pure-Feedback Systems in Discrete Time[J]. IEEE Transactions on Neural Networks,2008. 19(9):1599-1614.
[9]  Hongbin Du,H.S.. Pingjing Yao,Adaptive neural network for a class of low-Triangular-Structured Nonlinear Systems[J]. IEEE Transactions on Neural Networks,2006. 17(2):509-514.
[10]    单文桃. 高速电主轴驱动性能及智能控制研究[博士学位论文]. 重庆:重庆大学,2014.
[11]    单文桃,陈小安,合烨,周明红,刘俊峰. 基于免疫遗传算法的模糊径向基函数神经网络在高速电主轴中的应用[J]. 机械工程学报,2013, 49(23):167-173.
       Shan Wen-tao, Chen Xiao-an, He Ye, Zhou Minghong, Liu Jun-feng. Application of Immune Genetic Algorithm Based Fuzzy RBF Neural Network in High-speed Motorized Spindles[J]. Journal of mechanical engineering, 2013,49(23): 167-173.
 [12]  孟杰. 高速电主轴动力学分析与实验研究[博士学位论文]. 重庆:重庆大学,2008.
[13]  Polycarpou, M.M, Loannou P A. A robust adaptive nonlinear control design[J]. Automatica,1996,32(3):423-427.
[14]  胡云安,晋玉强,李海燕著. 非线性系统鲁棒自适应反演控制[M]. 北京:电子工业出版社,2010.
PDF(1665 KB)

487

Accesses

0

Citation

Detail

Sections
Recommended

/