[1] 钟秉林, 黄仁. 机械故障诊断学[M]. 北京:机械工业出版社, 2007:1-11.
ZHONG Xian-lin, HUANG Ren. Introduction to machine fault diagnosis[M]. Beijing: China Machine Press, 2007:1-11.
[2] 周福昌, 陈进, 何俊, 等. 循环平稳信号处理在机械设备故障诊断中的应用综述[J]. 振动与冲击, 2006, 25(5): 148-
152.
ZHOU Fu-chang, CHEN Jing, HE Jun, et al. Survey of the application of cyclostationary signal processing in machinery fault diagnosis[J]. Journal of Vibration and Shock, 2006,25(5):148-152.
[3] 雷亚国, 何正嘉. 混合智能故障诊断与预示技术的应用进展[J]. 振动与冲击, 2011,30(9):129-135.
LEI Ya-guo; HE Zheng-jia. Advances in applications of hybrid intelligent fault diagnosis and prognosis technique[J]. Journal of Vibration and Shock, 2011,30(9):129-135.
[4] 王长林, 陈鸿宝, 林玮, 等. SVM模式识别技术及在机械故障诊断中的应用进展[J]. 桂林电子科技大学学报, 2009,29(3):256-259.
WANG Chang-lin, CHEN Hong-bao, LIN Wei, et al. Pattern Recognition based on support vector machine and its application in fault diagnosis[J]. Journal of Guilin University of Electronic Technology, 2009,29(3):256-259.
[5] 袁胜发, 褚福磊. 支持向量机及其在机械故障诊断中的应用[J]. 振动与冲击, 2007,26(11):29-35.
YUAN Sheng-fa1,CHU Fu-lei. Support vector machines and its applications in machine fault diagnosis[J]. Journal of Vibration and Shock, 2007,26(11):29-35.
[6] Wu J D, Chan J J. Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network[J]. Expert Systems with Applications, 2009,36(5): 8862-8875.
[7] 程军圣, 史美丽, 杨宇. 基于LMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2010,29(08):141-144.
CHENG Jun-sheng, SHI Mei-li, YANG Yu. Roller bearing fault diagnosis method based on LMD and neural network[J]. Journal of Vibration and Shock, 2010,29(08):141-144.
[8] 向家伟, 陈雪峰, 何正嘉. 基于神经网络的短粗转轴裂纹诊断研究[J]. 振动与冲击, 2007,26(11):20-24.
XIANG Jia-wei, CHEN Xue-feng, HE Zheng-jia. Study on crack diagnosis for podgy shaft based on neural network[J].
Journal of Vibration and Shock, 2007,26(11):20-24.
[9] Jayaswal P, Verma S N, Wadhwani A K. Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis[J]. Journal of Vibration and Control, 2011,17(8):1131-1148.
[10] Moosavian A, Ahmadi H, Tabatabaeefar A, et al. Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing[J]. Shock and Vibration, 2013,20(2):263-272.
[11] 汤宝平, 李锋, 陈仁祥. 基于Littlewood-Paley小波支持向量机的故障诊断[J]. 振动与冲击, 2011,30(01):128-131.
TANG Bao-ping, LI Feng, CHEN Ren-xiang. Fault diagnosis based on Littlewood-Paley wavelet support vector machine[J]. Journal of Vibration and Shock, 2011,30(01):128-131.
[12] 赵志宏,杨绍普,申永军.基于独立分量分析与相关系数的机械故障特征提取[J].振动与冲击,2013,32(6):67-72.
ZHAO Zhi-hong,YANG Shao-pu,SHEN Yong-jun. Machinery fault feature extraction based on independent component analysis and correlation coefficient[J].Journal of Vibration and Shock,2013,32(6):67-72.
[13] Widodo A, Yang B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007,21(6):2560-2574.
[14] Tipping M. The relevance vector machine, 2000[C]. Proceedings of Advances in Neural Information Processing Systems. Cambridge,2000:652-658.
[15] Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1(3):211-244.
[16] Tipping M E. Bayesian inference: An introduction to principles and practice in machine learning[J]. Advanced Lectures on Machine Learning, 2004,3176:41-62.
[17] Lima C, Coelho A, Chagas S. Automatic EEG signal classification for epilepsy diagnosis with Relevance Vector Machines[J]. Expert Systems with Applications, 2009,36(6):10054-10059.
[18] 杨国鹏, 周欣, 余旭初, 等. 基于相关向量机的高光谱影像混合像元分解[J]. 电子学报, 2010,38(12):2751-2756.
YANG Guo-peng, ZHOU Xin, YU Xu-chu, et al. Relevance vector machine for hyperspectral imagery unmixing[J]. Acta Electronica Sinica, 2010,38(12):2751-2756.
[19] 赵春晖, 张燚, 王玉磊. 基于小波核主成分分析的相关向量机高光谱图像分类[J]. 电子与信息学报, 2012,34(8):1905-1910.
Zhao Chun-hui, Zhang Yi, Wang Yu-lei. Relevant vector machine classification of hyperspectral image based on wavelet kernel principal component analysis[J].Journal of Electronics & Information Technology,2012,34(8):1905-1910
[20] 董超, 田联房. 最速上升关联向量机高光谱影像分类[J]. 光学精密工程, 2012,20(6):1398-1405.
DONG Chao, TIAN Lian-fang. Hyperspectral image classification by steepest ascent relevance vector machine[J]. Optics and Precision Engineering, 2012,20(6):1398-1405.
[21] 段青, 赵建国, 马艳. 优化组合核函数相关向量机电力负荷预测模型[J]. 电机与控制学报, 2010,14(6):33-38.
DUAN Qing, ZHAO Jian-guo, MA Yan. Relevance vector machine based on particle swarm optimization of compounding kernels in electricity load forecasting[J]. Electric Machines and Control, 2010,14(6):33-38.
[22] 吕干云, 方奇品. 利用关联向量机和S变换识别电能质量扰动[J]. 高电压技术, 2010,36(10):2565-2569.
Lu Gan-yun ,FANG Qi-pin. Classification of power quality disturbances using RVM and S-transform[J]. High Voltage Engineering, 2010,36(10):2565-2569.
[23] 沈跃, 刘国海, 刘慧. 基于改进S变换和贝叶斯相关向量机的电能质量扰动识别[J]. 控制与决策, 2011,26(4):587-591.
SHEN Yue, LIU Guo-hai, LIU Hui. Classification identification of power quality disturbances based on modified S-transform and Bayes relevance vector machine[J.]
Control and Decision, 2011,26(4):587-591.
[24] Zhang W, Liu J, Niu Y Q. Quantitative prediction of MHC-II peptide binding affinity using relevance vector machine[J]. Applied Intelligence, 2009,31(2):180-187.
[25] Shen S H, Liu Y C. Efficient multiple faces tracking based on Relevance Vector Machine and Boosting learning[J].Journal of Visual Communication and Image Representation, 2008,19(6):382-391.
[26] Flake J, Moon T K, McKee M, et al. Application of the relevance vector machine to canal flow prediction in the Sevier River Basin[J]. Agricultural Water Management, 2010,97(2):208-214.
[27] Tripathi S, Govindaraju R S. On selection of kernel parametes in relevance vector machines for hydrologic applications[J]. Stochastic Environmental Research and Risk Assessment, 2007,21(6):747-764.
[28] 周晓英, 李巍华, 丁康. 基于关联向量机的齿轮故障检测方法研究[J]. 振动与冲击, 2008,27(6):51-54.
ZHOU Xiao-Ying, LI Wei-Hua, DING Kang. Gear fault detection based on relevance vector machine[J]. Journal of Vibration and Shock, 2008,27(6):51-54.
[29] Widodo A, Yang B S, Kim E Y, et al. Fault diagnosis of low speed bearing based on acoustic emission signal and multi-class relevance vector machine[J]. Nondestructive Testing and Evaluation, 2009,24(4):313-328.
[30] Li N, Liu C, He C, et al. Gear fault detection based on adaptive wavelet packet feature extraction and relevance vector machine[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2011,225(C11):2727-2738.
[31] He C, Liu C, Li Y, et al. Intelligent fault diagnosis of rotating machinery based on multiple relevance vector machines with variance radial basis function kernel[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2011,225(C7):1718-1729.
[32] Schmolck A, Everson R. Smooth relevance vector machine: a smoothness prior extension of the RVM[J]. Machine Learning, 2007,68(2):107-135.
[33] Bishop C M, Tipping M E. Variational relevance vector machines, 2000[C]. Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. 2000:46-53.
[34] Tipping M E, Faul A C, Others. Fast marginal likelihood maximisation for sparse Bayesian models, 2003[C]. Proceedings ofthe Ninth International Workshop on Artificial Intelligence and Statistics. Key West,Florida,2003:1-13.
[35] Tipping M E, Lawrence N D. Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis[J]. Neurocomputing, 2005,69(1-3):123-141.
[36] Yang Z R. A fast algorithm for relevance vector machine[J]. Intelligent Data Engineering and Automated Learning -Ideal 2006, proceedings, 2006,4224:33-39.
[37] Yang B, Zhang Z, Sun Z. Robust relevance vector regression with trimmed likelihood function[J]. IEEE Signal Processing Letters, 2007,14(10):746-749.
[38] Silva C, Ribeiro B, Sung A H. Boosting RVM classifiers for large data sets[M].Adaptive and Natural Computing Algorithms. Springer, 2007:228-237.
[39] Li D F, Hu W C, Xiong W, et al. Fuzzy relevance vector machine for learning from unbalanced data and noise[J]. Pattern Recognition Letters, 2008,29(9):1175-1181.
[40] Silva C, Ribeiro B. Towards expanding relevance vector machines to large scale datasets[J]. International Journal of Neural Systems, 2008,18(1):45-58.
[41] Tzikas D G, Likas A C, Galatsanos N P. Sparse Bayesian modeling with adaptive kernel learning[J]. IEEE Transactions on Neural Networks, 2009,20(6):926-937.
[42] Psorakis I, Damoulas T, Girolami M A. Multiclass relevance vector machines: sparsity and accuracy[J]. IEEE Transactions on Neural Networks,2010,21(10):1588-1598.
[43] 李刚, 王贵龙, 薛惠锋. RVM核参数的遗传算法优化方法[J]. 控制工程, 2010,17(03):335-337.
LI Gang, WANG Gui-Long, XUE Hui-feng. GA optimizing method to kernel function parameters of RVM[J]. Control Engineering of China, 2010,17(03):335-337.
[44] 张磊, 刘建伟, 罗雄麟. 基于KNN和RVM的分类方法-KNN-RVM分类器[J]. 模式识别与人工智能, 2010,23(03):376-384.
ZHANG Lei, LIU Jian-Wei, LUO Xiong-Lin. KNN and RVM based classification method: KNN-RVM classifier[J]. Pattern Recognition and Artificial Intelligence, 2010,23(03):
376-384.
[45] Fokoue E, Sun D C, Goel P. Fully Bayesian analysis of the relevance vector machine with an extended hierarchical prior structure[J]. Statistical Methodology, 2011,8(1SI):83-96.
[46] Clark A, Everson R M. Multi-objective learning of Relevance Vector Machine classifiers with multi-resolution kernels[J]. Pattern Recognition, 2012,45(9SI):3535-3543.
[47] 赵榈, 苏一丹, 覃华. 基于快速估计的相关向量机优化算法[J]. 计算机工程, 2012,38(09):205-207.
ZHAO Lv, SU Yi-dan, QIN Hua. Optimized algorithm of relevance vector machine based on rapid estimation[J]. Computer Engineering, 2012,38(09):205-207.
[48] 孙宗海, 孙优贤. 关联向量机在微生物发酵传感器故障诊断中的应用[J]. 高校化学工程学报, 2004,18(4):483-487.
SUN Zong-hai, SUN You-xian. The application of relevance vector machines to microbiological fermentation sensor fault diagnosis[J]. Journal of Chemical Engineering of Chinese Universities, 2004,18(4):483-487.
[49] 刘遵雄, 张德运, 孙钦东, 等. 基于相关向量机的电力负荷中期预测[J]. 西安交通大学学报, 2004,38(10):1005-1008.
Liu Zun-xiong, Zhang De-yun, Sun Qin-dong, et al. Mid-Term electric load prediction based on the relevant vector machine[J]. Journal of Xi'an Jiaotong University, 2004,38(10):1005-1008.
[50] Bowd C, Medeiros F A, Zhang Z H, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements[J]. Investigative Ophthalmology & Visual Science, 2005,46(4):1322-1329.
[51] Wei L, Yang Y, Nishikawa R M, et al. Relevance vector machine for automatic detection of clustered microcalcifications[J]. Medical Imaging, IEEE Transactions on Medical Imaging, 2005,24(10):1278-1285.
[52] Zhang H, Malik J. Selecting shape features using multi-class relevance vector machine[J]. Technical report no. UCB/EECS-2005-6, Department of EECS, University of California at Berkeley, 2005.
[53] 杨国鹏, 余旭初, 周欣, 等. 基于相关向量机的高光谱影像分类研究[J]. 测绘学报, 2010,39(6):572-578.
YANG Guo-peng, YU Xu-chu, ZHOU Xi, et al. Research on relevance vector machine for hyperspectral imagery classification[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(6):572-578.
[54] 董超, 田联房, 赵慧洁. 遗传关联向量机高光谱影像分类[J]. 上海交通大学学报, 2011,45(10):1516-1520.
DONG Chao, TIAN Lian-fang, ZHAO Hui-jie. Hyperspectral image classification by Genetic relevance vector machine[J]. Journal of Shanghai Jiaotong University, 2011,45(10):1516-
1520.
[55] Mianji F A, Zhang Y. Robust hyperspectral classification using relevance vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(6Part 1):2100-2112.
[56] 张宇航, 张晔. SVM和RVM对高光谱图像分类的应用潜能分析[J]. 哈尔滨工业大学学报, 2012,44(3):34-39.
ZHANG Yu-hang, ZHANG Ye. Potential analysis between SVM and RVM for hyperspectral imagery classification[J]. Journal of Harbin Institute of Technology, 2012,44(3):34-39.
[57] 赵春晖, 齐滨, 张燚. 基于改进型相关向量机的高光谱图像分类[J]. 光学学报, 2012,32(8):264-269.
Zhao Chun-hui, Qi Bin, Zhang Yi. Hyperspectral image classification based on variational relevance vector machine[J]. Acta Optica Sinica, 2012,32(8):264-269.
[58] 段青, 赵建国, 马艳. 基于稀疏贝叶斯学习的电力系统暂态稳定评估[J]. 电力自动化设备, 2009,29(9):36-40.
DUAN Qing, ZHAO Jian-guo, MA Yan. Power systems transient stability assessment based on sparse Bayesian learning[J]. Electric Power Automation Equipment, 2009,29(9):36-40.
[59] 孙志刚, 翟玮星, 李伟伦, 等. 基于EMD和相关向量机的短期负荷预测[J]. 电力系统及其自动化学报, 2011,23(01):92-97.
SUN Zhi-gang, ZHAI Wei-xing, LI Wei-lun, et al. Short-term load forecasting based on EMD and RVM[J]. Proceedings of the CSU-EPSA, 2011,23(01):92-97.
[60] Gholami B, Haddad W M, Tannenbaum A R. Relevance vector machine learning for neonate pain intensity assessment using digital imaging[J]. IEEE Transactions on Biomedical Engineering, 2010,57(6):1457-1466.
[61] 姚畅, 陈后金, Yang YongYi, 等. 基于自适应核学习相关向量机的乳腺X线图像微钙化点簇处理方法研究[J]. 物理学报, 2013,62(8):1-11.
Yao Chang, Chen Hou-Jin, Yang Yong-Yi, et al. Microcalcification clusters processing in mammograms based on relevance vector machine with adaptive kernel learning[J]. Acta Physica Sinica, 2013,62(8):1-11.
[62] 张胜君. 基于相关向量机的乳腺X线图像结构扭曲检测[J]. 光电子.激光, 2013,24(04):826-832.
ZHANG Sheng-jun. Detection architectural distortion in mammograms based on relevance vector machine[J]. Journal of Optoelectronics.Laser, 2013,24(04):826-832.
[63] 从飞云, 陈进, 董广明. 基于AR模型的Kolmogorov-Smirnov检验性能退化及预测研究[J]. 振动与冲击, 2012,31(10):79-82.
CONG Fei-yun, CHEN Jin, DONG Guang-ming. Perfo- rmance degradation assessment by Kolmogorov-Smirnov test and prognosis based on AR model[J]. Journal of Vibration and Shock, 2012,31(10):79-82.
[64] 陶新民, 徐晶, 杜宝祥, 等. 基于相空间RVM的轴承故障检测方法[J]. 振动与冲击, 2008,27(10):6-9.
TAO Xin-min, XUjing, DU Bao-xiang, et al. Bearing fault detection based on RVM using phase space[J]. Journal of Vibration and Shock, 2008,27(10):6-9.
[65] Widodo A, Kim E Y, Son J D, et al. Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine[J]. Expert Systems with Applications, 2009,36(3):7252-7261.
[66] 何创新, 李彦明, 刘成良, 等. 基于滑动平均与相关向量机的齿轮早期故障智能诊断[J]. 振动与冲击, 2010,29(12):89-92.
HE Chuang-xin, LI Yan-ming, LIU Cheng-liang, et al. Incipient fault diagnosis based on moving average and relevance vector machine[J]. Journal of Vibration and Shock, 2010,29(12):89-92.
[67] 吴定海, 张培林, 张英堂, 等. 基于时频奇异谱和RVM的柴油机故障诊断研究[J]. 机械强度, 2011,33(03):317-323.
WU Ding-hai , ZHANG Pei-lin, ZHANG Ying-tang, et al. Study on diesel engine faults diagnosis based on time-frequency singular value spectrum and RVM[J]. Journal of Mechanical Strength, 2011,33(03):317-323.
[68] 周勇, 何创新. 基于独立特征选择与相关向量机的变载荷轴承故障诊断[J]. 振动与冲击, 2012,31(3):157-161.
ZHOU Yong, HE Chuang-xin. Bearing fault diagnsis under varying load conditions based on individual feature selection and relevance vector machine[J]. Journal of Vibration and Shock, 2012,31(3):157-161.
[69] Vong C M, Wong P K, Ip W F, et al. Simultaneous-Fault diagnosis of automotive engine ignition systems using prior domain knowledge and relevance vector machine[J]. Mathematical Problems in Engineering, 2013(974862).
[70] Tran V T, Yang B S, Gu F S, et al. Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013,38(2):601-614.
[71] Du W L, Li A S, Ye P F, et al. Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm[J]. Shock and Vibration, 2013,20(4):781-792.
[72] Wang Bo, Liu Shu-ling, Zhang Hong-li, et al. Fault diagnosis of rolling bearing based on relevance vector machine and kernel principal component analysis[J]. Journal of Vibroengineering, 2013,15(4):2124-2136.
[73] Caesarendra W, Widodo A, Yang B S. Application of relevance vector machine and logistic regression for machine degradation assessment[J]. Mechanical Systems and Signal Processing, 2010,24(4):1161-1171.
[74] 张磊, 李行善, 于劲松, 等. 基于关联向量机回归的故障预测算法[J]. 系统工程与电子技术, 2010,32(7):1540-1543.
ZHANG Lei , LI Xing-shan, YU Jin-song, et al. Fault prognostic algorithm based on relevance vector machine regression[J]. Systems Engineering and Electronics, 2010,32
(7):1540-1543.
[75] 胡昌华, 王兆强, 周志杰, 等. 一种RVM模糊模型辨识方法及在故障预报中的应用[J]. 自动化学报, 2011,37(4):503-512.
HU Chang-Hua,WANG Zhao-Qiang, ZHOU Zhi-Jie, et al. An RVM fuzzy model identification method and its application to fault prediction[J]. Acta Automatica Sinica, 2011,37(4):503-512.
[76] Widodo A, Yang B S. Application of relevance vector machine and survival probability to machine degradation assessment[J]. Expert Systems with Applications, 2011,38(3):
2592-2599.
[77] 范庚, 马登武, 邓力, 等. 基于灰色相关向量机的故障预测模型[J]. 系统工程与电子技术, 2012,34(2):424-428.
FAN Geng, MA Deng-wu, DENG Li, et al. Fault prognostic model based on grey relevance vector machine[J]. Systems Engineering and Electronics, 2012,34(2):424-428.
[78] Di Maio F, Tsui K L, Zio E. Combining Relevance Vector Machines and exponential regression for bearing residual life estimation[J]. Mechanical Systems and Signal Processing, 2012,31:405-427.
[79] 范庚, 马登武. 基于组合优化相关向量机的航空发动机性能参数概率预测方法[J]. 航空学报, 2013,34(9):2110-2121.
FAN Geng, MA Deng-wu. Probailistic prediction method for aeroengine performance parameters based on combined optimum relevance vector machine[J].Acta Aeronautica et Astronautica Sinica, 2013,34(9):2110-2121.