Variable Polarity LMS Feedback Based on Displace Nulling to Compensate Unbalance of Magnetic Bearing

SONG Teng1,2 HAN Bangcheng1,2 ZHENG Shiqiang1,2 FENG Rui1,2

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (7) : 24-32.

PDF(2631 KB)
PDF(2631 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (7) : 24-32.

Variable Polarity LMS Feedback Based on Displace Nulling to Compensate Unbalance of Magnetic Bearing

  • Because of the decrease of high-speed motor magnetic rotor displace accuracy generated by unbalance vibration, a LMS feedback algorithm based on the principle of displace nulling is proposed. The system generalized dynamic stiffness is improved by online identifying the same-frequency component of displace signal and adding feedback compensation to achieve unbalance compensation. In addition, the stability of close loop system is analyzed by generalized root locus; meanwhile, to cross the critical frequency and achieve the displace compensation among the whole speed range, a variable polarity strategy is raised. Experiment results demonstrates it can suppress the displace same-frequency vibration effectively among the whole speed range.
Author information +
History +

Abstract

Because of the decrease of high-speed motor magnetic rotor displace accuracy generated by unbalance vibration, a LMS feedback algorithm based on the principle of displace nulling is proposed. The system generalized dynamic stiffness is improved by online identifying the same-frequency component of displace signal and adding feedback compensation to achieve unbalance compensation. In addition, the stability of close loop system is analyzed by generalized root locus; meanwhile, to cross the critical frequency and achieve the displace compensation among the whole speed range, a variable polarity strategy is raised. Experiment results demonstrates it can suppress the displace same-frequency vibration effectively among the whole speed range.

Key words

active magnetic bearing / displace nulling / unbalance compensation / variable polarity LMS feedback / generalized root locus

Cite this article

Download Citations
SONG Teng1,2 HAN Bangcheng1,2 ZHENG Shiqiang1,2 FENG Rui1,2. Variable Polarity LMS Feedback Based on Displace Nulling to Compensate Unbalance of Magnetic Bearing[J]. Journal of Vibration and Shock, 2015, 34(7): 24-32

References

[1] 郑世强,房建成,韩邦成. 提高双框架磁悬浮CMG动态响应能力的磁轴承补偿控制方法与实验研究[J]. 机械工程学报,2010,46(24):22-28.
Zheng Shiqiang,Fang Jiancheng,Han Bangcheng. Journal of Mechanical Engineering,2010,46(24):22-28(in Chinese).
[2] Shiqiang Zheng,Bancheng Han. Investigations of an integrated angular velocity measurement and attitude control system for spacecraft using magnetically suspended double-gimbal CMGs. Advances in Space Research,2013,51(12):2216–2228.
[3] 刘彬,房建成,刘刚,樊亚洪. 磁悬浮飞轮不平衡振动控制方法与试验研究[J].机械工程学报,2010,46(12):188-194.
Liu Bin,Fang Jiancheng,Liu Gang,Fan Yahong. Unbalance vibration control and experiment research of magnetically suspended flywheels[J]. Journal of Mechanical Engineering,2010,46(12):188-194(in Chinese).
[4] Herzog R,Buhter P,Gahler C,et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings [J]. IEEE Transactions on Control Systems Technology,1996,4(5):580-586.
[5] 孙岩桦,罗岷,虞烈. 基于自适应陷波器的电磁轴承不平衡补偿方法[J].振动工程学报,2000,13(4):610-614.
Sun Yanhua,Luo Min,Yu Lie. UnBalance compensation based on adaptive notch filter to active magnetic bearings[J]. Journal of Vibration Engineering,2000,13(4):610-614(in Chinese).
[6] Chao Bi,Dezheng Wu,Quan Jiang. Automatic learning control for unbalance compensation in active magnetic bearings[J].IEEE TRANSACTIONS ON MAGNETICS,2005,41(7):2270-2280.
[7] Chao Bi,Dezheng Wu,Quan Jiang,et al. Optimize control current in magnetic bearings using automatic learning control[C]. Proceedings of IEEE International Conference on Mechatronics,Istanbul,Turkey,2004:305-310.
[8] KY Chen,PC Tung,MT Tsai,et al. A self-tuning fuzzy PID-type controller design for unbalance compensation in an active magnetic bearing[J]. Expert Systems with Applications,2009,36[4]:8560–8570.
[9] 黄晓蔚,唐钟麟. 电磁轴承系统实现自动平衡的一种新方法[J].机械工程学报,2001,37(7):96-99.
Huang Xiaowei,Tang Zhonglin. New method for autobalancing with active magnetic bearings[J]. Chinese Journal of Mechanical Engineering,2001,7(7):96-99(in Chinese).
[10] R Markert,N Skricka,X Zhang. Unbalance   compensation on fexible rotors by magnetic bearings using transfer functions[C]. 8th International Symposium on Magnetic Bearings,Mito,Japan,2002:417-422.
[11] Abdelfatah M. Mohamed,Ilene Busch-Vishniac. Imbalance compensation and automatic balancing in magnetic bearing systems using the Q-Parameterization theory[C].Proceedings of the American Control Conference,1994,Baltimore,Maryland:2952-2957.
[12] 高辉,徐龙祥. 基于LMS 算法的磁悬浮轴承系统振动补偿[J]. 振动工程学报,2009,22(6):583-588.
Gao Hui,Xu Longxiang. Real-time vibration compensation for active magnetic bearing systems based on LMS algorithm[J]. Journal of Vibration Engineering,2009,22(6):583-588(in Chinese).
[13] 蒋科坚,祝长生. 主动电磁轴承转子系统自适应不平衡补偿控制[J].浙江大学学报(工学版),2011,45(3):503-509.
Jiang Kejian,Zhu CHangsheng. Adaptive unbalance compensation control of active magnetic bearing supporting rotor system[J]. Journal of Zhejiang University(Engineering Science),2011,45(3):503-509(in Chinese).
[14] 龙亚文,谢振宇,徐欣. 磁悬浮轴承H鲁棒控制策略研究[J].振动与冲击,2013,32(23):115-120.
    LONG Ya-wen,XIE Zhen-yu,XU Xin. H∞ robust control strategy for an active magnetic bearing[J].Journal of Vibration and Shock,2013,32(23):115-120(in Chinese).
[15] Hongqi Tian,Kenzo Nonami. Discrete-time sliding mode control of flexible rotor-magnetic bearing systems[J]. International Journal of Robust and Nonlinear Control,1996,6(7):609–632.
[16] Shi J,Zmood R,Qin L J. The Direct Method for Adaptive Feed-forward Vibration Control in Magnetic Bearing Systems[C]. Proceedings of the seventh International Conference on Control,Automation,Robotics and Vision,2002,Singapore:675-680.
[17] Shi J,Zmood R,Qin L J. The Indirect Adaptive Feed-forward Control In Magnetic Bearing Systems For Minimizing Selected Vibration Performance Measures[C]. 8th International Symposium on Magnetic Bearing,2002,Mito,Japan:223-228.
[18] 魏璀璨,王永,陈绍青,等. 磁悬浮隔振器分块归一化LMS算法控制研究[J]. 振动与冲击,2012,31(18):100-103.
   Wei Canyong,Wang Yong,Chen Shaoqing,et al. Control of an electromagnetic suspension vibration isolator based on block normalized LMS algorithm[J]. Journal of Vibration and shock,2012,31(18):100-103(in Chinese).
[19] 陈昊,王永,李嘉全,等. 基于饱和约束LMS算法的磁悬浮隔振器控制研究[J]. 振动与冲击,2012,31(18):125-128.
   Chen Hao,Wang Yong,Li Jiaquan,et al. Control of an electromagnetic suspension vibration isolator based on LMS algorithm with saturation constraint[J]. Journal of Vibration and shock,2012,31(18):125-128(in Chinese).
[20] Gerhard Schweitzer,Eric H. Maslen. Magnetic bearings:theory,design,and application to rotating machinery[M]. New York:Springer,2009:55-105.
[21] 高辉.主动磁悬浮轴承系统不平衡振动补偿研究[D].南京:南京航空航天大学,2011.
Gao Hui. Research on unbalance vibration compensation for active magnetic bearings system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011(in Chinese).
[22] 沈福民.自适应信号处理[M].西安,西安电子科技大学出版社,2001:48-50.
SHEN Fumin. Adaptive signal processing[M]. Xian: Xidian University Press,2001:48-50 (in Chinese).
PDF(2631 KB)

Accesses

Citation

Detail

Sections
Recommended

/