THE NONLINEAR STATIONARY RANDOM VIBRATION OF A RECTANGULAR THIN PLATE IN THE MAGNETIC FIELD

TU JianXin WANG ZhiRen WANG Ping

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (8) : 36-40.

PDF(1505 KB)
PDF(1505 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (8) : 36-40.

THE NONLINEAR STATIONARY RANDOM VIBRATION OF A RECTANGULAR THIN PLATE IN THE MAGNETIC FIELD

  • TU JianXin  WANG ZhiRen   WANG Ping
Author information +
History +

Abstract

According to the theory of electrodynamics, the magneto-elastic theory of plates and shells, and the theory of structure’s random vibration, the magneto-elastic nonlinear random vibration equation of a plate simply supported in an electromagnetic field is derived. And then, the nonlinear random vibration equation is changed into the ITO equation using the Galerkin method. The numerical characteristics of the displacement and speed responses of the stationary random vibration are gotten by using FPK equations method when the external excitation is stationary Gauss white noise. The influences of the parameters of the electromagnetic field to the numerical characteristics are discussed in the numerical example.

Key words

magneto-elasticity / nonlinearity / random vibration / rectangular thin plate

Cite this article

Download Citations
TU JianXin WANG ZhiRen WANG Ping . THE NONLINEAR STATIONARY RANDOM VIBRATION OF A RECTANGULAR THIN PLATE IN THE MAGNETIC FIELD[J]. Journal of Vibration and Shock, 2015, 34(8): 36-40

References

[1] L. V. Mol'chenko, I. I. Loos. Magneto-elastic nonlinear deformation of a conical shell of variable stiffness[J]. International Applied Mechanics, 1999, 35(11): 34-39
[2] L. V. Mol'chenko. Nonlinear deformation of current-carrying plates in a non-steady magnetic field[J]. Soviet Applied Mechanics (English Translation of Prikladnaya Mekhanika), 1990, 26(6): 555-558
[3] 周又和,郑晓静著. 电磁固体结构力学[M]. 北京:科学出版社, 1999
[4] 胡宇达. 传导薄板的非线性磁弹性振动问题[J]. 工程力学, 2001, 18(4): 89-94
   HU YuDa.Magneto-elastic nonlinear vibration of a thin conductive plate[J]. Engineering Mechanics, 2001, 18(4): 89-94(In Chinese).
[5] 王平, 李晓靓, 白象忠, 王知人. 导电梁在磁场中的磁弹性随机振动[J]. 振动与冲击, 2007,
26(3): 75-78
    WANG Ping,LI Xiao-jing,BAI Xiang-zhong.Magneto-elastic random vibration of
     an electro-conductive beam in magnetic field[J].Journal of  Vibration and Shock.
     2007, 26(3): 75-78.
[6] 王平, 李晓靓, 刘强. 导电薄板在磁场中的磁弹性随机振动[J]. 振动与冲击, 2009, 28(1):
   138-142.
    WANG Ping,LI Xiao-jing,LIU Qiang. Magneto-elastic random vibration of an electro-
    conductive plate in magnetic field[J].Journal of Vibration and Shock.2009,28(1):
   138-142.
[7] G. Yang, B. Sh. Zhao. The refined theory for a magnetoelastic body-I plate problems[J].
    International Journal of Applied Electromagnetics and Mechanics, 2009, 29: 1-14
[8] D. J. Hasanyan, Davresh, Librescu, Liviu. Nonlinear vibration of finitely electro-conductive
   plate-strips in a magnetic field[J]. Computers and Structures, 2005, 83: 1205-1216
[9] B. Moon, C. T. Lee, B. S. Kang, B. S. Kim. Statistical Random Response Analysis and Reliability
   Design of Structure System with Non-linearity[J]. Mechanical Systems and Signal Processing,
   2005,19:1135-1151
[10] T. P. Chang, H. C. Chang, M. F. Liu. A Finite Element Analysis on Random Vibration of Nonlinear
    Shell Structures[J]. Journal of Sound and Vibration, 2006, (291): 240-257
[11] 白象忠, 田振国. 板壳磁弹性力学基础[M]. 北京: 科学出版社, 2006
 BAI XiangZhong, TIAN ZhengGuo. Foundamental magneto-elasticity theory of plate and shells[M].
 Beijing:Sciences Press, 2006: 181-182(In Chinese).
[12] 陈予恕,唐云等.非线性动力学中的现代分析方法[M]. 北京:科学出版社, 2000,221-223.
PDF(1505 KB)

Accesses

Citation

Detail

Sections
Recommended

/