Nonlinear Dynamic Modeling and Experiment of Stack-type Piezoelectric Actuator Based on System Similarity Method

GUAN Chang-bin 1 CHEN Jun 1 WANG Xu-dong 1 JIAO Zong-xia 2

Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (9) : 15-20.

PDF(1750 KB)
PDF(1750 KB)
Journal of Vibration and Shock ›› 2015, Vol. 34 ›› Issue (9) : 15-20.

Nonlinear Dynamic Modeling and Experiment of Stack-type Piezoelectric Actuator Based on System Similarity Method

  • GUAN Chang-bin 1   CHEN Jun 1  WANG Xu-dong 1  JIAO Zong-xia 2
Author information +
History +

Abstract

 According to the similarity method of mechanical system and electrical system, a nonlinear circuit model of stack-type piezoelectric actuator is established by transforming its electromechanical coupling model to electrical domain. The identification method of hysteresis factor in the nonlinear circuit model is given out and the identification experiment for a commercial stack-type piezoelectric actuator is carried out. Based on the established nonlinear circuit model and the identified hysteresis factor, the nonlinear dynamic characteristics of the piezoelectric actuator are simulated. The simulated hysteresis curve agrees well with the experiment result which verifies the theory. The proposed modeling method describes the electromechanical coupling characteristic and nonlinear hysteresis characteristic of stack-type piezoelectric actuator in electrical domain, which makes the modeling have obvious physical sense. Therefore, this paper has practical significance to study the dynamic characteristics and control algorithm of stack-type piezoelectric actuator.

Key words

stack-type piezoelectric actuator / nonlinear modeling / hysteresis factor / system similarity method

Cite this article

Download Citations
GUAN Chang-bin 1 CHEN Jun 1 WANG Xu-dong 1 JIAO Zong-xia 2. Nonlinear Dynamic Modeling and Experiment of Stack-type Piezoelectric Actuator Based on System Similarity Method[J]. Journal of Vibration and Shock, 2015, 34(9): 15-20

References

[1]  Jiao Z, Chen P, Hua Q, et al. Adaptive vibration active control of fluid pressure pulsations [J]. Proceeding of the Institution of Mechanical Engineers, Part I: Journal of System and Control Engineering, 2003, 217: 311−318.
[2]  Anderson E H, Evert M E, Flannery P, et al. Image stabilization testbed (ISTAT) [C]. SPIE conference on technologies for synthetic environment: hardware-in-the-loop testing VI, Orlando, FL, 16 April 2001, paper no.4366−24.
[3]  Matticari G, Noci G E, Siciliano P. Cold gas micro propulsion prototype for very fine spacecraft attitude/position control [C]. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, USA, 2006, pp. 5378-5390.
[4]  Chopra I. Review of state of art of smart structures and integrated systerns [J]. AIAA Joumal, 2002, 40(11): 2145−2187.
[5]  吴博达, 鄂世举, 杨志刚, 等. 压电驱动与控制技术的发展与应用 [J]. 机械工程学报, 2003, 39(10):79−85.
WU Bo-da, E Shi-ju, YANG Zhi-gang, et al. Development and application of piezoelectric actuation and control [J]. Chinese Journal of Mechanical Engineering, 2003, 39(10):79−85.
[6]  赵淳生. 超声电机技术与应用 [M]. 北京: 科学出版社, 2007.
    ZHAO Chun-sheng. Ultrasonic Motors Technologies and Applications [M]. Beijing: Science Press, 2007.
[7]  Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active materials systems [J]. Journal of intelligent material systems and structures, 1997, 8: 718−732.
[8] 李国清, 胡元太, 胡鹏, 等. 相似电路耦合模型及其在压电-梁结构分析中的应用 [J]. 固体力学学报, 1999, 20 (4): 343−348.
LI Guo-qing, HU Yuan-tai, HU Peng, et al. A simulative circuit model for intelligent structures and its application to a smart beam with PZT actuator [J]. Acta Mechanica Solida Sinica, 1999, 20 (4): 343−348.
[9] Ge P, Jouaneh M. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators [J]. Precision Engineering, 1997, 20(2): 99−111.
[10] Stepanenko Y, Su C Y. Intelligent control of piezoelectric actuators [C]. 37th IEEE Conference on Decision and Control, Victoria University, BC, 1998: 4234−4239.
[11] Goldfarb M, Celanovic N. A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators [J]. Journal of dynamic systems, measurement, and control, 1997, (119): 478−485.
[12] Schäfer J, Janocha H. Compensation of hysteresis in solid-state actuators [J]. Sensors and Actuators A: Physical, 1995, 49(1): 97−102.
[13] Adriaens H, De Koning W L, Banning R. Modeling piezoelectric actuators [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4): 331−341.
[14] Cheng D K. Analysis of linear systems [M]. New Jersey: Addison-Wesley, 1959.
[15] Mayer D, Atzrodt H, Herold S, et al. An approach for the model based monitoring of piezoelectric actuators [J]. Computers & structures, 2008, 86(3): 314-321
PDF(1750 KB)

Accesses

Citation

Detail

Sections
Recommended

/