A new method for the modal parameters identification based on analytical modal decomposition and Hilbert transforms

LI Jing 1, CAODeng-qing1, LIU Shao-kui 2, YU Tian-hu 1, WANG Qing-yang 1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (1) : 34-39.

PDF(2061 KB)
PDF(2061 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (1) : 34-39.

A new method for the modal parameters identification based on analytical modal decomposition and Hilbert transforms

  • LI Jing 1, CAODeng-qing1, LIU Shao-kui 2, YU Tian-hu 1, WANG Qing-yang 1
Author information +
History +

Abstract

In order to identify the modal parameters of the spacecraft structures with low frequency, closely spaced modes, a new method based on analytical modal decomposition (AMD) and Hilbert transforms (HT) is proposed. The frequency and modal damping ratio of the structure are obtained by the impulse responses of the structure at any point. A satellite model composed of a central rigid body and two panels is taken as a typical example of spacecraft structures. The low-order modal parameters of a single panel and the satellite model at a fixed boundary condition are identified by this method. The comparison of the results obtained from the test data and the numerical simulation shows that the new method proposed in this paper is valid, especially in low frequency and closely spaced modes identification.

Key words

 Analytical modal decomposition (AMD) / Hilbert transforms (HT) / Low frequency / Closely spaced modes / Modal damping ratio

Cite this article

Download Citations
LI Jing 1, CAODeng-qing1, LIU Shao-kui 2, YU Tian-hu 1, WANG Qing-yang 1. A new method for the modal parameters identification based on analytical modal decomposition and Hilbert transforms[J]. Journal of Vibration and Shock, 2016, 35(1): 34-39

References

[1] 马兴瑞, 苟兴宇, 李铁寿, 等. 航天器动力学发展概况[J]. 宇航学报, 2000, 21(3): 1-5.
Ma Xing-rui, Gou Xing-yu, Li Tie-shou, et al. Development generalization of spacecraft dynamics [J]. Journal of Astronautics, 2000, 21(3): 1-5.
[2] 司洪伟, 李东旭, 陈卫东. 大挠性航天桁架结构动力学及其主动控制研究进展[J]. 力学进展, 2008, 38(2): 167-176.
Si Hong-wei, Li Dong-xu, Chen Wei-dong. Dynamic and active control of large flexible space truss: a review [J]. Advance in Mechanics, 2008, 38(2): 167-176.
[3] 赵寿根, 程伟, 孙国江, 等. 航天器动力学特性参数在轨辨识技术[J]. 北京航空航天大学学报, 2005, 31(9): 999-1003.
Zhao Shou-gen, Cheng Wei, Sun Guo-jiang, et al. Identification system to dynamic characteristics of on-orbit space vehicles. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(9): 999-1003.
[4] Piombo P A D, Fasana A, Marchesimllo S, et al. Modelling and identification of the dynamic response of a supported bridge. Mechanical systems and signal processing, 2000, 14(1): 75-89.
[5] 石志晓. 时频联合分析方法在参数识别中的应用[D]; 大连: 大连理工大学, 2005.
Shi Zhi-xiao. Application of joint time-frequency analysis method in parameter identification [D]. Dalian: Dalian University of Technology, 2005.
[6] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[7] Yang J N, Lei Y, Pan S, et al. System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes [J]. Earthquake engineering & structural dynamics, 2003, 32(9): 1443-1467.
[8] Chen J, Xu Y, Zhang R. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 805-827.
[9] 陈隽, 徐幼麟, 李杰.Hilbert-Huang变换在密频结构阻尼识别中的应用[J]. 地震工程与工程振动, 2003, 23(4): 34-42.
Chen Jun, Xu You-lin, Li Jie. Hilbert-Huang translation for damping ratio identification of structures with closed spaced modes of vibration [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(4): 34-42.
[10] Chen G, Wang Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components [J]. Mechanical Systems and Signal Processing, 2012(28): 258-279.
[11] 陈德成,杨靖波,白浩,等. 密频子空间的可控度与可观度[J]. 应用力学学报,2001, 18(2):15-19.
Chen De-cheng, Yang Jing-bo, Bai Hao, et al. The degree of controllability and observability of closed frequency subspace [J]. Chinese journal of applied mechanics, 2001, 18(2):15-19.
PDF(2061 KB)

Accesses

Citation

Detail

Sections
Recommended

/