Gear Fault Feature Extraction Based on Full Vector Permutation Entropy

Hao Wangshen, Wang Hongmin,Dong Xinmin, Hao Wei, Han Jie, Zhang Kun

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (11) : 224-228.

PDF(1672 KB)
PDF(1672 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (11) : 224-228.

Gear Fault Feature Extraction Based on Full Vector Permutation Entropy

  • Hao Wangshen, Wang Hongmin,Dong Xinmin, Hao Wei, Han Jie, Zhang Kun
Author information +
History +

Abstract

Gear fault vibration signals are often non-stationary and non-linear, and permutation entropy can well reflect the degree of disorder of a one-dimensional time series and the dynamics of the mutant signal. However, the traditional fault diagnosis method based on a single source of vibration signal can’t ensure the integrity of the information. This article will apply permutation entropy algorithm to the two-channel homologous signal, presenting a method of gear fault feature extraction based on full vector permutation entropy. Experimental results show that this method can effectively reflect the mutation of signals, avoid misdiagnosis caused by a single channel information which is imperfect.

Key words

 non-linear / permutation entropy / full vector permutation entropy / fault feature / gear

Cite this article

Download Citations
Hao Wangshen, Wang Hongmin,Dong Xinmin, Hao Wei, Han Jie, Zhang Kun. Gear Fault Feature Extraction Based on Full Vector Permutation Entropy[J]. Journal of Vibration and Shock, 2016, 35(11): 224-228

References

[1]  PINCUS S M. Approximate entropy as a measure of system ,complexity[J].Proc.Natl.Acad.Sci.USA,1991,88(6):2297-2301.
[2]  Bandt C, Pome B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,2002,88(17):174102-1-174102-4.
[3]刘永斌. 基于非线性信号分析的滚动轴承状态监测诊断研究[D].中国科学技术大学,2011.
Liu Yongbin. Nonlinear signal analysis for rolling bearing condition monitoring and fault diagnosis[D]. University of Science and Technology of China,2011
[4]李凌均,韩捷,李朋勇,郝伟,陈磊. 矢双谱分析及其在机械故障诊断中的应用[J]. 机械工程学报,2011,47(17):50-54.
LI Lingjun, HAN Jie, LI Pengyong, HAO Wei, CHEN Lei.  Vector-bispectrum Analysis and Its Application in Machinery Fault Diagnosis[J]. Chinese Journal of Mechanical Engineering,2011,47(17):50-54.
[5]韩捷,石来德.旋转机械的全信息能量谱分析方法研究[J].机械强度,2003,25(4):364-368. 
HAN Jie, SHI Laide. Study of full information energy spectrum analysis method of rotary machinery[J]. Journal of Mechanical Strength,2003,25(4):364-368.
[6]冯辅周,饶国强,司爱威,吴广平. 排列熵算法研究及其在振动信号突变检测中的应用[J].振动工程学报,2012,25(2):221-224.
Feng Fuzhou, Rao Guoqiang, Si Aiwei, Wu Guangping. Permutation entropy algorithm and its application in the vibration signal mutation detection[J]. Journal of Vibration Engineering,2012,25(2):221-224
[7]冯辅周,饶国强,司爱威. 基于排列熵和神经网络的滚动轴承异常检测与诊断[J]. 噪声与振动控制,2013,33(3):212-217.
FENG Fuzhou, RAO Guoqiang, SI Aiwei. Abnormality  Detection and Diagnosis of Rolling Bearing Based on Permutation  Entropy and Neural Network[J]. Noise and vibration control, 2013,33(3):212-217.
[8]刘永斌,龙潜,冯志华,刘维来. 一种非平稳、非线性振动信号检测方法的研究[J]. 振动与冲击,2007,26(12):131-134.
LIU Yongbin,LONG Qian,FENG Zhihua,LIU Weilai.Detection method for nonlinear and non-stationary signals[J].Journal of Vibration and Shock,2007,26(12):131-134.
[9]冯辅周,司爱威,饶国强,江鹏程. 基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报,2012,48(13):73-79.
FENG Fuzhou,SI Aiwei, RAO Guoqiang, JIANG Pengcheng. Early Fault Diagnosis Technology for Bearing Based on Wavelet Correlation Permutation Entropy[J]. Chinese Journal of Mechanical Engineering,2012,48(13):73-79.
[10] 昊普特.风力涡轮机动力传动故障诊断仿真器(WTDS).[EB/OL]. http://www.haopute.com/p-998.html. [2014.12.11].
[11]韩捷,巩晓赟,陈宏. 全矢谱技术在齿轮故障诊断中的应用[J]. 中国工程机械学报,2010,8(1):81-85.
HAN Jie,Gong Xiaoyun,Chen Hong.Applying full vector spectrum for gear fault diagnosis[J]. Chinese Journal of Construction Machinery,2010,8(1):81-85.
PDF(1672 KB)

662

Accesses

0

Citation

Detail

Sections
Recommended

/