Hypervelocity impact damage pattern recognition on aluminum plate based on Bayesian Regularization BP neural network

Liu Yuan, Pang Baojun

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (12) : 22-27.

PDF(1941 KB)
PDF(1941 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (12) : 22-27.

Hypervelocity impact damage pattern recognition on aluminum plate based on Bayesian Regularization BP neural network

  • Liu Yuan, Pang Baojun
Author information +
History +

Abstract

As a significant function module of space debris hypervelocity impact On-board monitoring technology, damage identification is the emphasis and difficulty of the research. Based on hypervelocity impact acoustic emission on aluminum plate, obtain varieties of hypervelocity impact acoustic emission signals by experiments. Combine with the accurate source location method with virtual wave front, specific time-frequency analysis and wavelet decomposition, extract and optimize the relevant parameters of damage pattern from hypervelocity impact acoustic emission signals, modeling a Bayesian Regularization BP neural network for damage pattern recognition method, carry out the pit and hole damage patterns recognition in aluminum plate.

Key words

space debris / hypervelocity impact / acoustic emission / neural network / damage pattern recognition

Cite this article

Download Citations
Liu Yuan, Pang Baojun. Hypervelocity impact damage pattern recognition on aluminum plate based on Bayesian Regularization BP neural network[J]. Journal of Vibration and Shock, 2016, 35(12): 22-27

References

[1] Upper Stage Explosion Places LEO Satellites at Risk[N]. Orbital Debris Quarterly News..2013, 17(1): 8
[2] Corsaro R, Giovane F, Tsou P, et al. PINDROP An Acoustic Particle Impact Detector[N]. Orbital Debris Quarterly News. 2004, 8(3): 3-4.
[3] Prosser W H, Madaras E I. Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation[R]. Hampton: Langley Research Center, 2010.
[4] Spencer G, Schäfer F, Tanaka M, et al. Design and initial calibration of micrometeoroid space debris detector (MDD)[Z]. Darmstadt, Germany: 2005.
[5] 熊秋鹏. 基于神经网络技术的空间碎片损伤模式识别研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2012: 34-36.
Xiong Qiupeng. Research on Space Debris Damage Pattern Recognition Based on Neutral Network Technology[D]. Harbin: Harbin Institute of Technology, 2012: 34~36.
[6] Liu Wugang, Pang Baojun, Han Zengyao, Sun Fei. Acoustic emission detection and location for hypervelocity impacts based on wavelet transform[J]. Gaojishu Tongxin/Chinese High Technology Letters, 2009; (19): 181-187.
[7] Liu Z.D., Pang B J.A method based on acoustic emission for locating debris cloud impact[C]. 4th International Conference on Experimental Mechanics . 2009.
[8] 张凯, 庞宝君, 林敏. 碎片云撞击声发射信号能量特征小波包分析[J]. 振动与冲击. 2012, vol.31, (12): 125-128.
Zhang Kai, Pang Baojun, Lin Min. Wavelet packet analysis for acoustic emission signals caused by debris cloud impact[J]. Journal of Vibration and shock. 2012, vol.31,  N(12): 125-128.
[9] Ditri, J.,Rose. J.L., and Chen, G. . Mode selection guidelines for defect detection optimization using Lamb waves[C]. Proceeding of the 18th Annual Review of progress in Quantitative NDE, 1991, vol.11, 2109-2115. NewYork.
[10] Mackay D. J. C., Bayesian interpolation. Neural Computation[J], 1992; 4:415—447.
[11] R. Orre, A. Lansner, A. Bate, M.Lindquist. Bayesian neural networks with confidence estimations applied to data mining[J]. Computational Statistics & Data Analysis, 2000, (34),:473-493.
[12] Man Leung Wong, Shing Yan Lee, K. Wong Sak Leung. Data mining of Bayesian networks using cooperative coevolution[J]. Decision Support Systems, 2004, (8):451-472.
PDF(1941 KB)

Accesses

Citation

Detail

Sections
Recommended

/