Rolling bearing fault feature extraction based on variational mode decomposition and Teager energy operator

Ma Zeng-qiang, Li Ya-chao, Liu Zheng, Guang Chao-jian

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (13) : 134-139.

PDF(2545 KB)
PDF(2545 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (13) : 134-139.

Rolling bearing fault feature extraction based on variational mode decomposition and Teager energy operator

  • Ma Zeng-qiang, Li Ya-chao, Liu Zheng, Guang Chao-jian
Author information +
History +

Abstract

In order to solve the problems that the fault feature of rolling bearing in early failure period is difficult to extract, an incipient fault diagnosis method for rolling bearing based on variational mode decomposition (VMD) and Teager energy operator was proposed. Firstly, VMD was used to decompose the fault signal into several intrinsic mode functions (IMFs), and then the IMF of biggest kurtosis was selected with Kurtosis Criterion and demodulated into Teager energy spectrum with Teager energy operator. The proposed method was applied to simulated signals and actual signals. The results show that this method improves the efficiency of signal decomposition and reduces the effect of noise, enabling accurate diagnosis of rolling bearing fault, the analysis results demonstrated the effectiveness of the proposed method.

Key words

 rolling bearing / fault diagnosis / variational mode decomposition / Teager energy operator

Cite this article

Download Citations
Ma Zeng-qiang, Li Ya-chao, Liu Zheng, Guang Chao-jian. Rolling bearing fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration and Shock, 2016, 35(13): 134-139

References

[1] Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[2] 李 辉,郑海起,杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击,2008,27(10):15-22.
Li Hui, Zhang Hai-qi, Yang Shao-pu. Bearing fault diagnosis based on EMD and Teager Kaiser energy operator [J]. Journal of vibration and shock, 2008, 27(10): 15-22.
[3] Kedadouche, M; Thomas, M; Tahan, A. A hybrid method combining Teager Kaiser energy operator, empirical mode decomposition and minimum entropy deconvolution for monitoring gears damages [J]. Mechanics & Industry, 2015, 16(6): 1-14.
[4] 张玲玲,廖红云,曹亚娟,等.基于 EEMD 和模糊 C均值聚类算法诊断发动机曲轴轴承故障[J].内燃机学报,2011,29(4):332-336.
    Zhang Ling-ling, Liao Hong-yun, Cao Ya-juan, et al. Diagnosis on crankshaft bearing fault based on EEMD and fuzzy C mean clustering arithmetic [J]. Transactions of CSICE, 2011, 29(4):332-336.
[5] A. Tabrizi; L. Garibaldi; A. Fasana. Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine [J]. Meccanica, 2015, 50(3): 865-874.
[6] 程军圣,史美丽,杨 宇. 基于LMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击,2010,29(8):141-144.
Cheng Jun-sheng, Shi Mei-li, Yang Yu. Roller bearing fault diagnosis method based on LMD and neural network [J]. Journal of vibration and shock, 2010, 29(8): 141-144.
[7] Dong. Z. S, Tian. X. Q, Zeng. J. C. Mechanical fault diagnosis based on LMD-approximate entropy and LSSVM [J]. Telkomnika - Indonesian Journal of Electrical Engineering, 2013,11(2): 803-808.
[9] Konstantin Dragomiretskiy, Dominique Zosso. Variational Mode Decomposition [J]. Transactions on Signal Processing, 2013, 10 (1109):1-15.
[10] Potamianos A, Maragos P. A comparison of the energy operator and Hilbert transform approaches for signal and apeech demodulation [J]. Signal Processing, 1994, 37(1): 95-120.
[11] 刘长良,武英杰,甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35 (0):1-7.
     Liu Changliang, Wu Yingjie, Zhen Chenggang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering [J]. Proceedings of the CSEE, 2015, 35 (0): 1-7.
[12] 唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(5):73-  81.
     Tang Guiji, Wang Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing [J].Journal of Xi’an Jiaotong University, 2015, 49(5): 73- 81.
 
PDF(2545 KB)

1099

Accesses

0

Citation

Detail

Sections
Recommended

/