Validation and correction of pyroshock data based on discrete wavelet decomposition

Wang XX 1 Qin ZY 1 Ding JF 2 Chu FL 1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (14) : 1-6.

PDF(2319 KB)
PDF(2319 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (14) : 1-6.

Validation and correction of pyroshock data based on discrete wavelet decomposition

  •   Wang XX 1  Qin ZY 1  Ding JF 2  Chu FL 1
Author information +
History +

Abstract

Acceleration data measured in pyroshock experiment usually contain the low-frequency trend, which makes the signal inaccuracy. Therefore the pyroshock data require validation and correction to avoid the integral zero shift. Traditional correction methods are mostly qualitative methods based on experience, which have some limitation. In this paper, a method based on the discrete wavelet decomposition was proposed. In this method wavelet correction parameters were chosen quantitatively by the frequency spectrum and correlation coefficients. The influence of vanishing moments on the result of correction was discussed. The proposed method was applied to validating and correction of the experimental data of pyroshock. It was revealed that this method can remove integral zero shift, correct the shock spectrum and improve the accuracy and effectiveness of the pyroshock test systems.
 

Key words

pyroshock;  / discrete wavelet transform;  / shock response spectrum;  / decomposition level;  / vanishing moments

Cite this article

Download Citations
Wang XX 1 Qin ZY 1 Ding JF 2 Chu FL 1. Validation and correction of pyroshock data based on discrete wavelet decomposition[J]. Journal of Vibration and Shock, 2016, 35(14): 1-6

References

[1] Lee J R, Chia C C, Kong C W. Review of pyroshock wave measurement and simulation for space systems[J]. Measurement, 2012, 45(4): 631-642.
[2] Bateman V I, Merritt R. Validation of Pyroshock Data[J]. Journal of the IEST, 2012, 55(1): 40-56.
[3] Irvine T. An introduction to the shock response spectrum[DB/OL]. http://www.vibrationdata.com/tutorials2/srs_intr.pdf, 2012.
[4] Chu A. Zeroshift of piezoelectric accelerometers in pyroshock measurements[C]. Bulletin of the 57th Shock and Vibration. USA:SAVIAC 1987, 1: 71-80.
[5] IEST-RP-DTE032.2. Recommended Practice for Pyroshock Testing[S]. Institute of Environmental Sciences and Technology, 2009.
[6] Mulville D R. Pyroshock Test Criteria, NASA Technical Standard[S]. Report NASA-STD-7003A, 2010.
[7] MIL-STD-810G Committee. Environmental Test Methods and Engineering Guides[S], 2009.
[8] 龙源, 谢全民, 钟明寿, 等. 爆破震动测试信号预处理分析中趋势项去除方法研究[J]. 工程力学, 2012, 29(10): 63-68.
LONG Yuan, XIE Quan-min, ZHONG Ming-shou, LU Liang, LI Xing-hua. Research on trend removing methods in preprocessing analysis of blasting vibration monitoring signals[J]. Eegineering mechanics, 2012, 29(10): 63-68
[9] Wu Z, Huang N E, Long S R, et al. On the trend, detrending, and variability of nonlinear and nonstationary time series[J]. Proceedings of the National Academy of Sciences, 2007, 104(38): 14889-14894.
[10] 陆凡东, 方向, 郭涛, 等. EMD与SLS法在爆破振动加速度信号时域积分中的应用[J]. 振动与冲击, 2012, 31(9): 90-93.
LU Fan-dong, FANG Xiang, GUO Tao, CHEN Yong. Application of EMD and SLS in time integration of blasting vibration acceleration[J]. Journal of vibration and shock, 2012, 31(9): 90-93
[11] 胡灿阳, 陈清军. 基于 EMD 和最小二乘法的基线飘移研究[J]. 振动与冲击, 2010, 29(3): 162-167.
HU Can-yang, CHEN Qing-jun. Research on base line drift using least-square and EMD[J]. Journal of vibration and shock, 2010,29(3):162-167
[12] Smallwood D O, Cap J S. Salvaging pyrotechnic data with minor overloads and offsets[J]. Journal of the IEST, 1999, 42(3): 27-35.
[13] Edwards T S. An improved wavelet correction for zero shifted accelerometer data[J]. Shock and Vibration, 2003, 10(3): 159-167
[14] 袁宏杰, 姜同敏. 实测爆炸分离冲击数据的分析和处理[J]. 固体火箭技术, 2006, 29(1): 72-74.
YUAN Hong-jie, JIANG Tong-min. Analysis and treatment of measured pyrotechnic shock data[J]. Journal of solid rocket technology, 2006, 29(1): 72-74
[15] Smallwood D O. An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1981, 51(2): 211-217.
[16] Thomson W. Theory of vibration with applications[M]. CRC Press, 1996.
[17] Daubechies I. Ten lectures on wavelets[M]. Philadelphia: Society for industrial and applied mathematics, 1992.
[18] Fugal D L. Conceptual wavelets in digital signal processing[M]. Space & Signals Technical Publishing, 2009, 374.
[19] 褚福磊, 彭志科, 冯志鹏, 等. 机械故障诊断中的现代信号处理方法[M]. 北京: 科学出版社, 2009.
PDF(2319 KB)

1308

Accesses

0

Citation

Detail

Sections
Recommended

/