Geometric Nonlinear Dynamics Response Research of Large-scale Wind Turbine

Cao Jiufa,Wang Tongguang,Wang Xiao

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (14) : 182-187.

PDF(2120 KB)
PDF(2120 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (14) : 182-187.

Geometric Nonlinear Dynamics Response Research of Large-scale Wind Turbine

  • Cao Jiufa,Wang Tongguang ,Wang Xiao
Author information +
History +

Abstract

With the development of the large-scale flexible wind turbine, the deflection of the blade gets larger, which making the geometric nonlinear effect more obvious. A free vortex wake model is presented to improve the accuracy of the aerodynamics load. The blade is assumed to be a beam model to analyze the structural response with the finite element method. Then the nonlinear kinetic equation is built, in which the geometric nonlinear stiffness matrix is calculated by the Galerkin method. The equation is solved with the Newmark immediate integration method and the corrected Newton-Raphson method for time marching. Thus, the coupling simulation between the aerodynamics performance and the geometric nonlinear structural response of the large-scale wind turbine blade is realized. The computed results for NREL Phase VI rotor compare well with the experimental data, validating the prediction accuracy of the calculation model. The linear and nonlinear dynamics response of the large-scale wind turbine NH1500 is then calculated. The result indicates the influence on the structural response and aerodynamics performance of the geometric nonlinear analysis. The model is helpful to improve the design standard of the large-scale wind turbine and the accuracy of the load calculation.

 

Key words

wind turbine / free vortex wake method / geometric nonlinear / Newton-Raphson method / dynamics response

Cite this article

Download Citations
Cao Jiufa,Wang Tongguang,Wang Xiao. Geometric Nonlinear Dynamics Response Research of Large-scale Wind Turbine[J]. Journal of Vibration and Shock, 2016, 35(14): 182-187

References

[1] Yuan WB. Geometric nonlinear bending response and buckling of angle-section beams under pure bending [J]. Journal of Constructional Steel Research, 2013, 85:73-80.
[2] Almeida Carlos A, Albino Juan C R, Menezes Ivan F M, et al. Geometric nonlinear analysis of functionally graded beams using a tailored Lagrangian formulation [J].Mechanics Research Communications, 2011, 38(8):553-559.
[3] Sebastian T, Lackner M A. Development of a free vortex wake method code for offshore floating wind turbines [J]. Renewable Energy, 2012, 46: 269-275.
[4] Min-soo Jeong, Seung-jae Yoo, In Lee. Wind turbine aerodynamics prediction using free-wake method in axial flow [A].4th International Symposium on Physics of Fluids[C], Lijiang, China, 2012.
[5] Zhou WP, Tang SL, Lu H. Computation on Aerodynamic Performance of Horizontal Axis Wind Turbine Based on Time-marching Free Vortex Method [J]. Proceedings of the CSEE, 2011,31(29):124-130.
[6] Zheng YQ, Zhao RZ, Liu H. Finite Element Modal Analysis of Large-scale Composite Wind Turbine Blade [J]. Advanced Materials Research, 2013, 694-697:453-457.
[7] Zhu SF, Rustamov I. Structural Design and Finite Element Analysis of Composite Wind Turbine Blade [J]. Key Engineering Materials, 2013, 525-526: 225-228.
[8] Wu A, Sun WL, Wang PP. Large Wind Turbine Dynamic Modeling and Simulation [J].  Advanced Materials Research, 2010, 34-35:1098-1103.
[9] Riziotis V A, Politis E S, Voutsinas S G, et al. Stability Analysis of Pitch-regulated, Variable-speed Wind Turbines in Closed Loop Operation Using a Linear Eigenvalue Approach [J]. WIND ENERGY, 2008, 11(5):517-535.
[10] 莫文威,李德源,夏鸿建,等. 水平轴风力机柔性叶片多体动力学建模与动力特性分析[J]. 振动与冲击,2013,32(22):99-105.
Mo Wenwei, Li Deyuan, Xia Hongjian, et al. Multibody dynamic modeling and dynamic characteristics analysis of flexible blades for a horizontal axis wind turbine [J]. Journal of Vibration and Shock, 2013, 32(22):99-105.
[11] 马剑龙,汪建文,董波,等. 风力机风轮低频振动特性的实验模态研究[J]. 振动与冲击,2013,32(16):164-170.
Ma Jianlong, Wang Jianwen, Dong Bo, et al. Experimental modal analysis on low-frequency vibration characteristics of wind turbine [J]. Journal of Vibration and Shock, 2013, 32(16):164-170.
[12] K.J.巴斯. 工程分析中的有限元法[M]. 机械工业出版社,1991.
Bathe K J. Finite Element Procedures in Engineering Analysis [M]. Prentice-Hall, Inc., 1982.
[13] 王勖成. 有限单元法[M]. 清华大学出版社,2003.
Wang Xucheng. Finite Element Method [M]. Tsinghua University Press, 2003.
[14] Martin O L Hansen. Aerodynamics of Wind Turbines [M]. 2008.
[15] 程危危,曹登庆,初世明. 风力机叶片动力学建模研究[J]. 动力学与控制学报, 2011, 9(4):342-347.
Cheng Weiwei, Cao Dengqing, Chu Shiming. Dynamics modeling for the blade of a wind turbine [J]. Journal of Dynamics and Control, 2011, 9(4):342-347.
[16] 彭细荣,杨庆生,孙卓. 有限单元法及其应用[M].北京:清华大学出版社,清华大学出版社,2012,369-373.
Peng Xirong, Yang Qingsheng, Sun Zhuo. Finite Element Method and its Application [M]. Tsinghua University Press, 2012, 369-373.
[17] Hand MM, Simms DA, Fingersh LJ, et al. Unsteady aerodynamics experiment Phases Ⅵ: Wind tunnel test configurations and available data campaigns. Golden: National Renewable Energy Laboratory, NREL/TP-500-29955, 2001.
PDF(2120 KB)

683

Accesses

0

Citation

Detail

Sections
Recommended

/