The optimization design of power anti-resonance isolator for helicopter rotor / fuselage

LI Yuanyuan1 CHEN Guoping1 WANG Ke1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (15) : 115-121.

PDF(1381 KB)
PDF(1381 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (15) : 115-121.

The optimization design of power anti-resonance isolator for helicopter rotor / fuselage

  • LI Yuanyuan1   CHEN Guoping1  WANG Ke1
Author information +
History +

Abstract

To improve the isolation efficiency of helicopter rotor / fuselage anti-resonance isolator, optimization for the isolation system has been accomplished. The thickness of the front and rear flexible beam and counterweight density are determined as the design variables through sensitivity analysis, and then the isolation efficiency and counterweight kinetic energy are optimized using genetic algorithms. Taking into account the low computational efficiency that simulation models direct call the optimization algorithm problem, a surrogate model built by response surface is established. The results show that: A certain anti-resonance frequency is consistent with the excitation frequency, counterweight vibration increasing, force transmission rate decreasing and vibration isolation efficiency is greatly improved after optimization. Optimization design improves the power isolator anti-resonance isolation performance and can provide some guidance for the design of helicopter vibration isolators.

Key words

Helicopter / Anti-resonance isolator / Response surface / Optimization

Cite this article

Download Citations
LI Yuanyuan1 CHEN Guoping1 WANG Ke1. The optimization design of power anti-resonance isolator for helicopter rotor / fuselage[J]. Journal of Vibration and Shock, 2016, 35(15): 115-121

References

[1] Phuriwat A. I. Semi-active control of helicopter vibration using controllable stiffness and damping device[D]. United States:The Pennsylvania State University, 2002. 
[2] Ganguli R. Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods[J]. Journal of Sound and Vibration, 2002, 258(2):327-344.
[3] Cheung Y. L, Wong W. O. Design of a non-traditional dynamic vibration absorber[J]. Journal of the Acoustical Society of America, 2009, 126(2): 564-567.
[4] Flannelly W. G. The dynamic anti-resonant vibration solator [C]//Proc of 22nd Annual AHS National Forum. Washingten DC, 1966: 152-160.
[5] 顾仲权. 动力反共振隔振[J]. 噪声与振动控制, 1989, 12(6):36-40.
    Gu Zhongquan. Power anti-resonance isolation[J]. Noise and Vibration Control, 1989, 12(6):36-40.
[6] 李五洲. 反共振隔振装置隔振原理分析[J]. 直升机技术, 2004, 8(1):6-8.
     Li Wuzhou. The isolation principle analysis on anti-resonance isolator[J]. Helicopter Technology, 2004, 8(1):6-8.
[7] 黄传跃, 郭光海, 李祖钊. 一种新型旋翼/机身隔振装置及性能分析[J]. 振动工程学报, 1999, 12(3): 403-409.
   Huang Chuanyue, Guo Guanghai, Li Zuzhao. A new rator/fuselage vibration isolator and its characteristic analysis[J]. Journal of Vibration Engineering, 1999, 12(3): 403-409.
[8] 邓旭东, 刘勇. 橡胶弹性扭矩管式动力反共振隔振器性能分析[J]. 第26届全国直升机年会学术论文集, 2010.
    Deng Xudong, Liu Yong. the Performance analysis of power anti-resonance isolation for rubber elastic torque tube[J]. The 26th annual meeting of the National Helicopter papers set, 2010.
[9] Joseph T. S. Helicopter gearbox isolation using periodically layered fluidic isolators [D]. United States:The Pennsylvania State University, 2003.
[10] Yilmaz C, Kikuchi N. Analysis and design of passive band-stop filter-type vibration isolation for low-frequency application [J]. Journal of Sound and Vibration, 2006, 291: 1004-1028.
[11] 王铁, 赵震, 陈峙, 王景新. 某车架结构基于灵敏度分析的优化设计[J]. 机械科学与技术, 2013, 32(4), 545-550.
    Wang Tie, Zhao Zhen, Chen Zhi, Wang Jingxin. Optimization of the dump truck frame structure based on the sensitivity analysis [J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(4), 545-550.
[12] 邬广铭, 史文库, 刘伟等. 基于模态灵敏度分析的客车车身优化[J]. 振动与冲击, 2013, 32(3), 41-45.
    Wu Guangming, Shi Wenku, Liu Wei etc.. Structural optimization of a light bus body-in-white based on modal sensitivity analysis[J]. Journal of Vibration and Shock, 2013, 32(3), 41-45.
[13] 荣安琪. 重型卡车驾驶室模态灵敏度分析与结构优化[D]. 长春:吉林大学, 2009.
    Rong anqi, Modal sensitivity analysis and structural optimization of the cab of heavy-duty truck[D]. Chang Chun: Jilin University, 2009.
[14] 蒋荣超, 王登峰, 吕文超等. 基于Kriging模型的驾驶室悬置系统多目标优化[J]. 农业机械学报, 2014.
Jiang Rongchao, Wang Dengfeng, Lv Wenchao etc.. Multi-objective Optimization of Cab Suspension Based on Kriging Model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014.
[15] 何成, 陈国平, 何欢. 基于全局近似函数的薄壁结构耐撞性多目标优化[J]. 南京航空航天大学学报, 2012, 44(4): 472-477.
    He Cheng, Chen Guoping, He Huan. Multi-Objective Optimazation of Thin-Walled Structures Crashworthiness Based on Global Approxinate Function[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(4): 472-477.
PDF(1381 KB)

897

Accesses

0

Citation

Detail

Sections
Recommended

/