Anticipated synchronization of chaos for a class of high dimension dynamical system

Sun Tao1 Qin Weiyang 2

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (15) : 50-52.

PDF(1482 KB)
PDF(1482 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (15) : 50-52.

Anticipated synchronization of chaos for a class of high dimension dynamical system

  • Sun Tao1   Qin Weiyang 2 
Author information +
History +

Abstract

For a class of high dimension nonautonomous dynamical systems, the control method to realize anticipated synchronization of chaos is presented. Based on chaos synchronization, the derived system and difference equation for anticipated synchronization are set up. It is proved that the control method can make the response of derived system to be identical with that of the original system in future of  seconds theoretically. Furthermore, the coupling terms are simplified. To make the anticipation time longer, the multi-layer derived systems are set up and coupled with each other. The Duffing system and a pendulum with feedback are simulated to validate the theoretical analysis. The simulation results proved that the presented method is correct and effective.

 

Key words

chaos / anticipated synchronization / dynamical system

Cite this article

Download Citations
Sun Tao1 Qin Weiyang 2 . Anticipated synchronization of chaos for a class of high dimension dynamical system[J]. Journal of Vibration and Shock, 2016, 35(15): 50-52

References

[1]. Pecora L M,Carroll T L. Synchronization in chaotic systems[J]. Phys. Rev. Lett.,1990, 64(8): 821.
[2]. 过榴晓,徐振源.  关于非线性系统两类广义混沌同步存在性研究[J]. 物理学报,2008, 57(10): 6086.
GUO Liu-xiao, XU Zhen-yuan,. The existence of two types of generalized synchronization of nonlinear systems[J]. Acta Phys. Sin. 2008, 57(10): 6086.(in Chinese)
[3]. 张 檬,吕 翎,吕 娜, 等. 结构与参量不确定的网络与网络之间的混沌同步[J]. 物理学报,2012,61(22):508.
ZHANG Meng, LV Ling, LV Na, et al. Chaos synchronization between complex networks with uncertain structures and unknown parameters[J]. Acta Phys. Sin.  2012, 61(22): 508.(in Chinese)
[4]. Wang X, Song J. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun Nonlinear Sci Numer Simulat[J], 2009, 14:3351-3357
[5]. Wang X, Zhang X, Ma C. Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn[J], 2012, 69:511–517
[6]. 黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步[J]. 物理学报,2013,62(8):507.
HUANG Li-lian, QI Xue. The synchronization of fractional order chaotic systems with diferente orders based on adaptive sliding mode control[J]. Acta Phys. Sin.  2013, 62(8): 507.(in Chinese)
[7]. Lin D, Wang X, Nian F, Zhang Y, Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing[J], 2010, 73: 2873–2881
[8]. Lin D, Wang X, Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters. Neurocomputing[J], 2011,  74: 2241–2249
[9]. Voss H U. Anticipating chaotic synchronization[J].  Phys. Rev. E. 2000,61:5115.
[10]. Wei H, Li L. Estimating parameters by anticipating chaotic synchronization[J]. Chaos, 2010,20:023112.
[11]. Yan H, Wei P, Xiao X. General anticipating response in coupled dynamical systems[J]. Chaos, 2009,19:023122.
[12]. Pyragas K, Pyragienė T. Coupling design for a long-term anticipating synchronization of chaos[J].  Phys. Rev. E, 2008, 78:046217.
[13]. Pyragiene T, Pyragas K, Anticipating synchronization in a chain of chaotic oscillators with switching parameters. Physics Letters A, 2015, 379: 3084–3088
[14]. Mayo C, Mirasso C R, Tora R. Anticipated synchronization and the predict-prevent control method in the FitzHugh-Nagumo model system[J]. Phys. Rev. E, 2012, 85:056216
PDF(1482 KB)

578

Accesses

0

Citation

Detail

Sections
Recommended

/