Performance improvement for empirical mode decomposition at low sampling rates

LI Heng1, LI Zhi2,3, and MO Wei1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (17) : 185-190.

PDF(1496 KB)
PDF(1496 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (17) : 185-190.

Performance improvement for empirical mode decomposition at low sampling rates

  • LI Heng1, LI Zhi2,3, and MO Wei1
Author information +
History +

Abstract

Empirical mode decomposition (EMD) depends highly on the exact location and value of extrema, which requires a high degree of oversampling. Aiming at improving the performance of EMD under low sampling rates, a local mean estimation method based on B-spline approximation is proposed. Firstly, the location of extrema is extracted as the time scale. Then, the location is re-sampled to generate knots for B-splines. Finally, the local mean is computed directly based on B-spline least squares approximation. In compare with the existing EMD method, the exact location and value of extrema are not essential to the proposed technique. The efficiency of this technique is demonstrated using synthetic signals. Experiments show that the performance of the proposed method is not reduced even the sampling rate is close to the Nyquist rate. It also demonstrates that the proposed method is superior to existing interpolation methods in separation performance.

Key words

empirical mode decomposition / B-spline approximation / low sampling rates / signal decomposition / time-frequency analysis

Cite this article

Download Citations
LI Heng1, LI Zhi2,3, and MO Wei1. Performance improvement for empirical mode decomposition at low sampling rates[J]. Journal of Vibration and Shock, 2016, 35(17): 185-190

References

[1] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A, 1998, 454(1971): 903-995.
[2] 吴响, 钱建生, 王海燕. 微震信号多尺度非线性特征提取与辨识研究[J]. 仪器仪表学报, 2014, 35(5): 969-975.
WU X, QIAN J S, WANG H Y. Study on multi-scale nonlinear feature extraction and signal identification for microseismic signal[J]. Chinese Journal of Scientific Instrument, 2014, 35(5): 969-975.
[3] 王录雁 王强 张梅军 李焕良 赵玮. 基于 EMD 的滚动轴承故障灰色诊断方法[J]. 振动与冲击, 2014, 33(3): 197-202.
WANG Lu-yan, WANG Qiang, ZHANG Mei-jun, LI Huan-liang, ZHAO Wei. A grey fault diagnosis method for rolling bearing based on EMD [J]. Journal of vibration and shock, 2014, 33(3): 197-202.
[4] YANG Z, LING B W K, BINGHAM C. Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum[J]. Measurement, 2013, 46(8): 2481-2491.
[5] KOMATY A, BOUDRAA A -O, AUGIER B, et al. EMD-Based Filtering Using Similarity Measure Between Probability Density Functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1):27-34.
[6] GOHARRIZI A Y, SEPEHRI N. Internal Leakage Detection in Hydraulic Actuators Using Empirical Mode Decomposition and Hilbert Spectrum[J]. IEEE Transactions on Instrumentation and Measurement , 2012, 61(2):36-378.
[7] LEI Y, LIN J, HE Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1): 108-126.
[8] Rilling G, Flandrin P. on the Influence of Sampling on the Empirical Mode Decomposition[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse:IEEE, 2006: 444-447.
[9] 肖瑛, 殷福亮. 解相关 EMD: 消除模态混叠的新方法[J]. 振动与冲击, 2015, 34(4): 25-29.
Xiao Ying, Yin Fuliang. Decorrelation emd: a new method of eliminating mode mixing[J]. Journal of vibration and shock, 2015, 34(4): 25-29.
[10] 王录雁, 王强, 鲁冬林等. EMD自适应三角波匹配延拓算法[J]. 振动与冲击, 2014, 33(4): 94-99.
WANG Lu-yan, WANG Qiang, LU Dong-lin, et al. A self-adaptive triangular waveform matching extension algorithm for EMD. Journal of vibration and shock, 2014, 33(4): 94-99.
[11] XU Z, HUANG B, ZHANG F. Improvement of empirical mode decomposition under low sampling rate[J]. Signal processing, 2009, 89(11): 2296-2303.
[12] ROY A, DOHERTY J F. Improved signal analysis performance at low sampling rates using raised cosine empirical mode decomposition[J]. Electronics letters, 2010, 46(2): 176-177.
[13] CHEN Q, HUANG N, RIEMENSCHNEIDER S, et al. A B-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006, 24(1-4): 171-195.
[14] 赵利强 王建林 于涛. 基于改进EMD的输油管道泄漏信号 特征提取方法研究[J]. 仪器仪表学报, 2013, 34(12): 2696-2702.
ZHAO Li-qiang, WANG Jian-lin, YU Tao. Study on the extraction method for oil pipeline leakage signal feature based on improved empirical mode decompositio [J]. Chinese Journal of Scientific Instrument, 2013, 34(12): 2696-2702.
[15] KIM D, PARK M, OH H S. Bidimensional statistical empirical mode decomposition[J]. Signal Processing Letters, IEEE, 2012, 19(4): 191-194.
[16] UNSER M, ALDROUBI A, EDEN M. B-spline signal processing. I. Theory[J]. IEEE Transactions on Signal Processing, 1993, 41(2): 821-833.
[17] UNSER M. Splines: A perfect fit for signal and image processing[J]. IEEE Signal Processing Magazine, 1999, 16(6): 22-38.
[18] RILLING G, FLANDRIN P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 85-95.
PDF(1496 KB)

748

Accesses

0

Citation

Detail

Sections
Recommended

/