To meet the demands of self-powered monitoring system for energy at low-speed wind, a piezoelectric energy harvester (PEH) is presented. The PEH is comprised of a rigid piezoelectric beam and a flexible beam strung together in series. Firstly, the structure and principle of the PEH are introduced. And then, analysis of influence factor to properties and proof experiment are carried out. The research results show that the thickness (h2)/length (l2) of the flexible beam, the attack angle (α) and the wind velocity (v) exert great influence on output voltage (Vg), which can be improved effectively with reasonable matching of the above parameters. Under other parameters given, Vg is in direct proportion to v (0~9.45m•s-1). There is an optimal length of the flexible beam ( ) and an optimal attack angle ( ) for the PEH to achieve maximal voltage ( ).With the increasing of h2, increases, and decreases. Under h2=0.1/0.2/0.3mm, and are equal to 45/60/150mm and 57.6/39.2/33.6V respectively. remains almost the same (35º) with the increasing of h2 from 0.1mm to 0.3mm.
Key words
piezoelectric /
energy harvester /
wind energy /
rigid-flexible composite beam
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]. Beeby S P, Zhu D. Vibration energy harvesting: fabrication, miniaturisation and application [J]. Proc. of SPIE, 2015, 9517: 951703.
[2]. Matiko J W , Grabham N J , Beeby S P, et al. Review of the application of energy harvesting in buildings [J]. Meas. Sci. Technol, 2014, 25: 012002 (25pp).
[3]. Niell E, Alper E. Advances in energy harvesting methods [M]. New York: Springer-Verlag New York Inc., 2013.
[4]. Delnavaz A, Voix J. Flexible piezoelectric energy harvesting from jaw movements [J]. Smart Mater. Struct., 2014, 23:105020 (8pp).
[5]. Daqaq M F, Masana R, Erturk A, et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion [J]. ASME Appl. Mech. Rev., 2014, 66(4): 040801.
[6]. 阚君武,于丽,王淑云,等.一种旋磁激励式圆形压电振子发电机 [J].振动与冲击, 2015, 34(2): 116-120.
KAN Jun-wu, YU Li, WANG Shu-yun, et al. A piezodisc energy generator excited by rotary magnets [J]. Journal of Vibration and Shock, 2015, 34(2): 116-120.
[7]. Truitt A, Mahmoodi S N. A review on active wind energy harvesting designs. International Journal of Precision Engineering and Manufacturing. 2013, 4(9): 1667-1675.
[8]. Luong H T , Goo N S . Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill [J]. Smart Mater. Struct. 21 (2012) 025017 (9pp).
[9]. Skow E, Koontz Z, Cunefare K, et al. Hydraulic pressure energy harvester enhanced by Helmholtz resonator. Proc. Of SPIE, 2015, 9431: 943104.
[10]. Sivadas V, Wickenheiser A M. A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting. Proc. Of SPIE, 2011, 7977: 79770F.
[11]. Hobeck J D, Geslain D, Inman D J. The dual cantilever flutter phenomenon: a novel energy harvesting method. Proc. of SPIE, 2014, 9061: 906113.
[12]. Wu N, Wang Q, Xie X D. Wind energy harvesting with a piezoelectric harvester [J]. Smart Mater. Struct. 22 (2013) 095023 (9pp).
[13]. 罗惕乾. 流体力学 [M]. 北京:机械工业出版社,2007.
Luo T Q. Fluid Mechanics [M]. BeiJing: China Machine Press, 2007.
[14]. Singiresu S R. 机械振动[M]. 北京:清华大学出 版社,2013.
Singiresu S R. Mechanical Vibration [M]. BeiJing: Tsinghua University Press, 2013.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}