Strength change laws and micro-structure analysis of concrete in sulfate environment

NIE Liang-xue1, XU Jin-yu1, 2, LIU Yuan-fei1, FAN Jian-she3,WANG Hong-wei4

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 203-208.

PDF(1514 KB)
PDF(1514 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 203-208.

Strength change laws and micro-structure analysis of concrete in sulfate environment

  • NIE Liang-xue1,  XU Jin-yu1, 2, LIU Yuan-fei1, FAN Jian-she3,WANG Hong-wei4
Author information +
History +

Abstract

In order to delve deep into the regularity of strength degradation of concrete in sulfate environment, a comparative study is done between static compressive strength, acoustic emission and scanning electron microscope (SEM) to understand the micro-level aspect of concrete specimens which have been immersed in sodium sulfate solution. Results of the experimental indicated that: the static compressive strength of specimens increases first and then decrease during corrosive period, the maximum growth rate is 12.71%, the final strength is only 82.84% and 90.22% of specimens which under normal environment and immersion in distilled water respectively; Similarly, the change regularity of longitudinal wave velocity increases first and then decrease, too, and the final velocity is only 87.95% and 91.41% of specimens which under normal environment and immersion in distilled water respectively; It was discovered that there are many crystals inside or around the pores after corrosion, and the crystals are ordered and arranged densely. So the highly salinity environment has a significant effect of weaken the mechanical performance of concrete.
 
 

Key words

Sulfate / Corrosion / Static compressive strength / Longitudinal wave velocity / Scanning electron microscopy

Cite this article

Download Citations
NIE Liang-xue1, XU Jin-yu1, 2, LIU Yuan-fei1, FAN Jian-she3,WANG Hong-wei4. Strength change laws and micro-structure analysis of concrete in sulfate environment[J]. Journal of Vibration and Shock, 2016, 35(20): 203-208

References

[1]  金祖权, 孙伟, 张云升, 等, 混凝土在硫酸盐氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5): 630-635.
JIN Zu-quan, SUN Wei, ZHANG Yun-sheng, Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 630-635.
[2]  Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427.
[3]  Song H, Chen J. Effect of damage evolution on poisson's ratio of concrete under sulfate attack[J]. Acta Mechanica Solida Sinica, 2011, 24(3): 209-215.
[4]  Sun C, Chen J, Zhu J, et al. A new diffusion model of sulfate ions in concrete[J]. Construction and Building Materials, 2013, 39: 39-45.
[5]  王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报, 2006, 37(8): 958-968.
WANG Hai-long, LI Qing-bin. Micro-mechanism of static and dynamic strengths for saturated concrete[J]. Journal of Hydraulic Engineering, 2006, 37(8): 958-968.
[6]  吴福飞, 侍克斌, 董双快, 等. 硫酸盐镁盐复合侵蚀后混凝土的微观形貌特征[J]. 农业工程学报, 2015, 31(9): 140-146.
Wu Fufei, Shi Kebin, Dong Shuangkuai, et al. Microstructure characteristics of concrete after erosion of magnesium salts and sulfates[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 140-146.
[7]  高润东. 复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究[D]. 北京, 清华大学, 2010.
[8]  Komlos K, Popovics S, Nürnbergerova T, et al. Ultrasonic pulse velocity test of concrete properties as specified in various standards[J]. Cement and Concrete Composites, 1996, 18(5): 357-364.
[9]  Tamás F, Balázs G L. Fracture mechanics and structural concrete[J]. Cement & Concrete Research, 1996, 77(1):1289-1289.
[10] Sarkar1 S, Mahadevan S, Meeussen J C L, et al. Sensitivity analysis of damage in cement materials under sulfate attack and calcium leaching[J]. Journal of Materials in Civil Engineering, 2012, 24(4): 430-440.
[11] 赵明阶, 徐蓉. 用弹性波速计算正交各向异性岩体的裂隙张量[J]. 重庆建筑大学学报, 1999, 21(2): 42-48.
Zhao Mingjie, Xu Rong. A calculating method for the crack tensor of the orthotropic rockmass by the elastic wave velocity[J]. Journal of Chongqing Jianzhu University, 1999, 21(2): 42-48.
[12] 赵明阶, 吴德伦. 单轴加载条件下岩石声学参数与应力的关系研究[J]. 岩石力学与工程学报, 1999, 18(1): 50-54.
Zhao Mingjie, Wu Delun. Ultrasonic velocity and attenuation of rock under uniaxial loading[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(1): 50-54.
[13] Luo X, Sun W, Chan S Y N. Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete[J]. Cement and Concrete Research, 2000, 30(3): 379-383.
[14] Gregerová M, Všianský D. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy[J]. Materials Characterization, 2009, 60(7): 680-685.
[15] 王信刚, 马保国, 付洪波. 梯度结构混凝土的界面力学性能与微观结构[J]. 建筑材料学报, 2010, 13(1):100-104.
WANG Xin-gang, MA Bao-guo, FU Hong-bo. Interface mechanical property and microstructure of gradient structural concrete(GSC) [J]. Journal of Building Material, 2010, 13(1):100-104.
PDF(1514 KB)

496

Accesses

0

Citation

Detail

Sections
Recommended

/