Anti-controlling Pitchfork bifurcation on Poincaré map of a three-degree-of-freedom vibro-impact system

WU Xin1,2 XU Hui-dong3 WEN Gui-lin 2 WEI Ke-xiang 1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 24-29.

PDF(877 KB)
PDF(877 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 24-29.

Anti-controlling Pitchfork bifurcation on Poincaré map of a three-degree-of-freedom vibro-impact system

  • WU Xin1,2  XU Hui-dong3  WEN Gui-lin 2  WEI Ke-xiang 1
Author information +
History +

Abstract

In the premise of no change of periodic solutions of the original system and with consideration of the difficulties that given by the implicit Poincaré map of the vibro-impact system, anti-control of Pitchfork bifurcation on Poincaré map of a three-degree-of-freedom vibro-impact system is studied by using linear feedback control method. Firstly, the six-dimensional Poincaré map of close-loop system is established, to overcome the difficulty that the numerical computing method can be only used to determine control gains on basis of the classical critical criteria of Pitchfork bifurcation described by the properties of eigenvalues in six-dimensional map, an explicit Pitchfork critical criterion without using eigenvalues is used to obtain the controlling parameters area of two parameters. Then, the stability of the Pitchfork bifurcation is further analyzed by utilizing the center manifold and normal formal theory. Finally, the numerical experiments verify that the stable Pitchfork bifurcation solutions can be generated at an arbitrary specified parameters point by controlling.

Key words

Pitchfork bifurcation / anti-controlling bifurcation / stability / vibro-impact system

Cite this article

Download Citations
WU Xin1,2 XU Hui-dong3 WEN Gui-lin 2 WEI Ke-xiang 1. Anti-controlling Pitchfork bifurcation on Poincaré map of a three-degree-of-freedom vibro-impact system[J]. Journal of Vibration and Shock, 2016, 35(20): 24-29

References

[1] Shaw S W,Holmes P J. A periodically forced impact oscillator with large dissipation[J]. Journal of Applied Mechanics, 1983, 50(4a): 849-857.
[2] Holmes P J. The dynamics of repeated impacts with a sinusoidally vibrating table[J]. Journal of Sound and Vibration, 1982, 84(2): 173-189.
[3] Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator[J]. Journal of Sound and Vibration, 1991, 145(2): 279-297.
[4] Bureau E, Schilder F, Elmegård M, et al. Experimental bifurcation analysis of an impact oscillator-Determining stability[J]. Journal of Sound and Vibration, 2014, 333(21): 5464-5474.
[5] 金栋平,胡海岩,吴志强. 基于Hertz 接触模型的柔性梁碰撞振动分析[J]. 振动工程学报,1998,11(1):46-51.
JIN Dong-ping, HU Hai-yan, WU Zhi-qiang. Analysis of vibro-impacting flexible beams based on Hertzian contact model [J]. Journal of vibration engineering, 1998, 11(1): 46-51.
[6] Luo G W, Lv X H, Shi Y Q. Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: Diversity and parameter matching of periodic-impact motions[J]. International Journal of Non-Linear Mechanics, 2014, 65: 173-195.  
[7] Ding W C, Li G F, Luo G W, et al. Torus T2 and its locking, doubling, chaos of a vibro-impact system[J]. Journal of the Franklin Institute, 2012, 349(1): 337-348. 
[8] 盛冬平,朱如鹏,陆凤霞,等. 多间隙弯扭耦合齿轮非线性振动的分岔特性研究[J]. 振动与冲击, 2014,33(19): 116-122.
SHENG Dong-ping, ZHU Ru-peng, LU Feng-xia, et al. Bifurcation characteristics of bending-torsional coupled gear nonlinear vibration with multi-clearance [J]. Journal of vibration and shock, 2014, 33(19): 116-122.
[9] 金俐,陆启韶. 非光滑动力系统 Lyapunov 指数谱的计算方法[J]. 力学学报,2005,37(1):40-47.
JIN Li,  LU Qi-shao. A method for calculating the spectrum of Lyapunov exponents of non-smooth dynamical systems[J]. Acta mechanica sinica, 2005, 37(1):40-47.
[10] Yue Y, Xie J H. Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system[J]. International Journal of Non-Linear Mechanics, 2013, 48: 51-58.
[11] Chen G R, Lu J L, Nicholas B, et al. Bifurcation dynamics in discrete-time delay-feedback control systems[J]. International Journal of Bifurcation and Chaos, 1999, 9(1): 287-293.
[12] Alonso D M, Paolini E E, Moiola J L. An experimental application of the anticontrol of Hopf bifurcations[J]. International Journal of Bifurcation and Chaos, 2001, 11(7): 1977-1987.
[13] 刘素华,唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制[J]. 物理学报,2008,57(10): 6162-6168.
LIU Su-hua, TANG Jia-shi. Anti-control of Hopf bifurcation at zero equilibrium of 4D Qi system [J]. Acta physica sinica, 2008, 57(10): 6162-6168.
[14] Wang X D, Deng L W, Zhang W L. Hopf bifurcation analysis and amplitude control of the modified Lorenz system[J]. Applied Mathematics and Computation, 2013, 225: 333-344.
[15] Wei Z C, Yang Q G. Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci[J]. Applied Mathematics and Computation, 2010, 217(1): 422-429.
[16] 罗冠炜,谢建华. 碰撞振动系统的周期运动和分岔[M]. 北京: 科学出版社,2004.
[17] Xu H D, Wen G L. Alternative criterion for investigation of pitchfork bifurcations of limit cycle in relay feedback systems[J]. Journal of Computational and Nonlinear Dynamics, 2014, 9(3): 031004-1 -031004-7.
[18] Kuznetsov Y A. Elements of applied bifurcation theory [M]. 2nd ed. New York: Springer-Verlag, 1998.
PDF(877 KB)

Accesses

Citation

Detail

Sections
Recommended

/