The Research on Vibration Control for Large Packaged Power Equipment

Shiliang Zhang 1 Jin Yan 1 Quan Zhang 1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 37-40.

PDF(1846 KB)
PDF(1846 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 37-40.

The Research on Vibration Control for Large Packaged Power Equipment

  • Shiliang Zhang 1   Jin Yan 1  Quan Zhang 1
Author information +
History +

Abstract

The concept of power equipment in large packaged style has been in a wide range of applications. This paper discussed and analyzed the vibration reasons for large packaged power equipment firstly. And the space matrix equations of vibration block with two vibration excitation point are deduced based on the state space theory. So the law relationship between vibration excitation and response can be simulated and analyzed in MATLAB software. Finally, the function between damping control force and the control parameters of damping device is calculated and then the simulation results and derivation function are verified by scale-reduced experimental platform. This paper achieves effective control for vibration problems of large packaged power equipment, and provides a theoretical reference for multi-point linkage vibration conditions.

Key words

Large Packaged System / Power Equipment / State-Space Model / Damping Device

Cite this article

Download Citations
Shiliang Zhang 1 Jin Yan 1 Quan Zhang 1. The Research on Vibration Control for Large Packaged Power Equipment[J]. Journal of Vibration and Shock, 2016, 35(20): 37-40

References

[1] 李  潇,陈  巍. 海洋石油平台设备成撬特点分析[J]. 石油和化工设备,2013, 16(4):39-40.
LI Xiao, CHEN Wei. The characteristics analysis of packged equipment on offshore oil platform [J]. Petro & Chemical Equipment, 2013, 16(4):39-40.
[2] 官耀华. 平湖油气田往复式压缩机振动故障实例分析[J]. 噪声与振动控制,2012, 4: 166-182.
GUAN Yao-hua. Vibration Faults Example Analysis of Pinghu Oil Gas Field Reciprocating Compressor [J]. Noise and Vibration Control, 2012, 4: 166-182.
[3] Ou J P,Xu L,Li Q S,et al. Vibration control of steel jacket offshore platform structures with damping isolation systems [J]. Engineering Structures, 2006,29:1525-1538.
[4] 赵  东,马汝建,王威强,蔡冬梅. 海洋平台局部振动模态分析[J]. 石油大学学报(自然科学版),2005, 29(1):75-78.
ZHAO Dong, MA Ru-jian, WANG Wei-Qiang, CAI Dong-Mei. Vibration modal analysis of local offshore platforms [J]. Journal of the University of Petroleum, 2005, 29(1):75-78.
[5] 范  勇,马汝建,林近山. 海洋平台低频振动测试[J]. 济南大学学报(自然科学版),2004, 18(1):46-48.
FAN Yong, MA Ru-jian, LIN Jin-Shan. Low frequency vibration measurement of offshore platforms[J]. Journal of Jinan University(Sci .& Tech.), 2004, 18(1):46-48.
[6] Zhang Q,Zhang S L,Yan J,Tang J L. The Application Status and Prospects of Vibration Control Technology for Large Packaged Power Equipment [J]. Applied Mechanics and Materials, 2014, 543-547: 1457-1460.
[7] 谭  平,Shirley J Dyke. 飞机航电设备的半主动磁流变控制[J]. 地震工程与工程振动,2007, 27(6):203-210.
TAN Ping, Shirley J D. Semi-active vibration control of aircraft avionics using MR dampers [J]. Journal of Earth Quake engineering and Engineering Vibration, 2007, 27(6):203-210.
[8] 肖启瑞,樊明明,黄学翾,等. 车辆工程仿真与分析——基于MATLAB的实现[M]. 北京:机械工业出版社,2012.
XIAO Qi-rui, FAN Ming-ming, HUANG Xue-xuan, et al. Vehicle Engineering Simulation and Analysis - Based on MATLAB Realization [M]. Beijing: Machinery Industry Press, 2012.
PDF(1846 KB)

Accesses

Citation

Detail

Sections
Recommended

/