Adaptive Vibration-Rejection Control on Permanent-Magnet-Type Bearingless Motor

ZHANG Tao1, NI Wei1, MO Lihong2, JIA Hongyunu3

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 65-70.

PDF(1829 KB)
PDF(1829 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 65-70.

Adaptive Vibration-Rejection Control on Permanent-Magnet-Type Bearingless Motor

  • ZHANG Tao1, NI Wei1, MO Lihong2, JIA Hongyunu3
Author information +
History +

Abstract

To solve the difficulty, which the high frequency noise signal seriously affects the identification precision of vibration frequency, the vibration-rejection control system is unstable in permanent-magnet-type bearingless motor. In this paper, vibration-rejection control method based on adaptive multi-frequency tracking algorithm was presented. The production mechanism of vibration frequency identification error is analyzed. The adaptive multi-frequency tracking algorithm is induced and the control system is constructed. Using Lyapunov stability theory, the adaptive multi-frequency tracking algorithm and the control system asymptotically stability are proved. The method is added into the rotor field oriented control system of permanent-magnet-type bearingless motor and the simulation and experimental researches are executed. The research results have shown that the adaptive multi-frequency tracking algorithm can identify the vibration frequency quickly and correctly. The vibration-rejection control system can suppress the rotor vibration and the rotational accuracy is improved.
 

 

Key words

permanent-magnet-type bearingless motor / bearingless motor / vibration-rejection / mass unbalance / adaptive control.

Cite this article

Download Citations
ZHANG Tao1, NI Wei1, MO Lihong2, JIA Hongyunu3. Adaptive Vibration-Rejection Control on Permanent-Magnet-Type Bearingless Motor[J]. Journal of Vibration and Shock, 2016, 35(20): 65-70

References

[1] 王凤翔. 高速电机的设计特点及相关技术研究[J]. 沈阳工业大学学报, 2006, 28(3):258-264.
Wang Fengxiang. Study on design feature and related technology of high speed electrical machines [J].Journal of Shenyang University of Technology, 2006, 28(3): 258-246.
[2] 王继强, 王凤翔, 鲍文博等. 高速永磁电机转子设计与强度分析[J].中国电机工程学报, 2005, 25(15):2843-2848.
Wang Jiqiang, Wang Fengxiang, Bao Wenbo, etal. Rotor design and strength analysis of high speed permanent magnet machine[J]. Proceedings of the CSEE, 2005, 25(15): 2843-2848.
[3] M. Nasir, U. Uddin. Control of interior type PM synchronous motor for high speed operations-summary [J]. Power Engineering Society General Meeting, 2004. Vol 2, pp:1280-1283。
[4] T. Schneider, A. Binder. Design and evaluation of a 60000 rpm permanent magnet bearingless high speed motor[J]. IEEE Transactions on industry applications, 2006, 42(4): 1031-1037.
[5] A. Binder, T. Schneider, M. Klohr. Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines[J]. IEEE Transactions on industry applications, 2006, 42(4): 1031-1037.
[6] V. Elnaz, S. Bahram, B. Stuart. Estimation and rejection of unknown sinusoidal disturbance using a generalized adaptive force balancing method[C].Proceedings of the 2007 American control conference, New York, USA, July 11-13, 2007: 3529-3534.
[7] 张涛,朱熀秋. 无轴承永磁同步电机转子质量不平衡补偿控制[J]. 中国电机工程学报, 2007, 27(15): 33-37.
Zhang Tao, Zhu Huangqiu. Rotor’s mass unbalance compensation control in bearingless permanent magnet-type synchronous motors [J]. Proceedings of the CSEE, 2007, 27(15): 33-37.
[8] 张倩影, 邓智泉, 杨艳. 无轴承开关磁阻电机转子质量偏心补偿控制[J]. 中国电机工程学报, 2011, 31(21): 128-134.
Zhang Qianying, Deng Zhiquan, Yang Yan. Compensation control of rotor mass eccentric in bearingless switched reluctance motors [J]. Proceedings of the CSEE, 2011, 31(21): 128-134.
[9] B. Aleksandar, P. Henk, A. F. Jan. On the speed limits of permanent magnet machines [J]. IEEE Transactions on Magnetics, 2010, 57(1): 220- 227.
[10] I. K. Sung, K. K. Young, H. L. Geun, etal. A novel rotor configuration and experimental verification of interior PM synchronous motor for high speed applications [J]. IEEE Transactions on Magnetics, 2012, 48(2): 843- 846.
[11] Kejian Jiang, Changsheng Zhu. Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain[J] Mechanical Systems and Signal Processing, 2011, 25 : 1417-1429.
[12] K. Nonami, Q. Fan, Unbalance vibration control of magnetic bearing systems using adaptive algorithm with disturbance frequency estimation, in: Proceedings of the 6th International Symposium on Magnetic Bearings, MIT, Cambridge, Masscahusetts, USA, 1998, 663–672.
[13] J. Shi, R. Z. mood, L. Qin. Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals[J]. Control Engineering Practice, 2004, 12 :283–290.
[14] Nan-Chyuan Tsai, Li-Wen Shih, Rong-Mao Lee. Spindle vibration suppression for advanced milling process by using self-tuning feedback control[J]. International Journal of Advanced Manufacture Technology, 2010, 48: 1-10.
[15] Min Xiang, Tong Wei. Autobalancing of high-speed rotors suspended by magnetic bearings using LMS adaptive feedforward compensation[J]. Journal of Vibration and Control, 2014, 20(9) 1428–1436.
[16] Se Young Yoon, Zongli Lin, Paul E.Allaire. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings [M]. Published by Springer-Verlag London, 2013.
[17] U. Keuchel, R. M. Stephan. Microcomputer based adaptive control applied to thyristor-driven DC Motors [M]. Published by Springer-Verlag London limited, 1994.
PDF(1829 KB)

Accesses

Citation

Detail

Sections
Recommended

/