Theoretical and Experimental Studies on the Axial Impact Behavior of Q235B Longitudinally Welded Tubes

Zheng Yuqing 1, Zhu Xichan 1, Dong Xueqing 1, Ma Zhixiong 1,2

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 98-103.

PDF(1252 KB)
PDF(1252 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (20) : 98-103.

Theoretical and Experimental Studies on the Axial Impact Behavior of Q235B Longitudinally Welded Tubes

  • Zheng Yuqing 1, Zhu Xichan 1, Dong Xueqing 1, Ma Zhixiong 1,2
Author information +
History +

Abstract

Based on Alexander’s theoretical crushing model and empirical Cowper-Symonds equation, a formula including strain rate effect for predicting dynamic mean crushing force of circular tube was derived, and derivation differences between the above and theoretical formulas put forward by Abramowicz were discussed. Then it adopted the drop tower rig to make the impact test for 9 kinds of Q235B longitudinally thin-walled welded tubes, and the test results were compared with the theoretical prediction values. The result comparison shows that the predicting formula of dynamic mean crushing force derived from Alexander’s model gives lower results, and Abramowicz’s formulas give bigger results. At last, referring to impact test conditions and results, it modifies the Abramowicz’s formula by setting sensitivity coefficient of strain rate from 3.91 to 3.0. The modified values correlate well with all test results and the maximum deviation is lower than 8%. In addition, it also proposes a simple dynamic peak crushing force formula for predicting thin-walled welded tubes with media sizes theoretically.
 

Key words

Thin-walled welded tube / impact test / mean crushing force / peak crushing force / theoretical prediction

Cite this article

Download Citations
Zheng Yuqing 1, Zhu Xichan 1, Dong Xueqing 1, Ma Zhixiong 1,2. Theoretical and Experimental Studies on the Axial Impact Behavior of Q235B Longitudinally Welded Tubes[J]. Journal of Vibration and Shock, 2016, 35(20): 98-103

References

[1]  罗云蓉, 王清远, 刘永杰, 等. Q235、Q345 钢结构材料的低周疲劳性能[J]. 四川大学学报(工程科学
    版), 2012, 4(2): 169-175.
    LUO Yun-rong , WANG Qing-yuan, LIU Yong-jie, etc. Low Cycle Fatigue Properties of Steel Structure Materials Q235 and Q345[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 4(2): 169-175.
[2]  曾 力. 拉伸试验速率对低碳钢力学性能的影响[J]. 理化检验-物理分册, 2007, 43(1): 6-8.
     ZEN Li. The influence of tensile test rate on mechanical property of low carbon steel[J]. PTCA (Part: A PH YS. Test.), 2014, 43(1): 6-8.
[3]  林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定[J]. 振动与冲击, 2014, 33(9): 153-158.
LIN Li, ZHI Xu-dong, FANG Feng, etc. Determination of parameters of Johnson-cook models of Q235B steel[J]. Journal of Vibration and Shock, 2014, 33(9): 153-158.
[4]  张荣. 圆钢管侧向冲击性能研究[D]. 黑龙江:哈尔滨工业大学, 2013.
     ZHANG Rong. Study on performance of circular steel pipes under lateral impact[D]. Heilong jiang: Harbin Institute of Technology, 2013. 
[5]  顾红军, 赵国志, 陆延金, 等. 轴向冲击下薄壁圆柱壳的屈曲行为的实验研究[J]. 振动与冲击, 2004, 23(4): 58-63.
GU Hong-jun, ZHAO Guo-zhi, LU Ting-jin, etc. Buckling of thin_wall cylindrical shell under axial impact[J]. Journal of Vibration and Shock, 2004, 23(4): 58-63.
[6]  余同希. 利用金属塑性变形原理的碰撞能量吸收装置[J]. 力学进展,1986,16(1): 1-12.
     YU Tong-xi. Impact energy absorbing devices based upon plastic deformation of metallic elements[J]. Advances in Mechanics, 1986, 16(1): 1-12.
[7]  王青春, 范子杰, 桂良进, 等. 泡沫铝填充帽型结构轴向冲击吸能特性的试验研究[J]. 机械工程学报,
     2006, 42(4): 101-106.
WANG Qing-chun, FAN Zhi-jie, GUI Liang-jin, etc. Experimental studies on the axial crash behavior of aluminium foam-filled hat sections[J]. Chinese Journal of Mechanical Engineering, 2006, 42(4):101-106.
[8]  Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1):10-15.
[9] 余同希, [澳]卢国兴, 华云龙(译). 材料与结构的能量吸收[M]. 北京:化学工业出版社, 2006: 109-115.
    YU Tong-xi and LU Guo-xing, Translated by Hua Yun-long. Energy absorption of structures and materials[M]. Beijing: Chemical Industry Press, 2006:109-115.
[10] Su X Y, Yu T X and Reid S R. Inertia-sensitive impact energy-absorbing part I: effect of inertia and elasticity [J]. International Journal of Impact Engineering, 1994, 16(4): 651-672.
[11] Su X Y, Yu T X and Reid S R. Inertia-sensitive impact energy-absorbing part II: effect of strain rate [J]. International Journal of Impact Engineering, 1994, 16(4): 673-689.
[12] Abramowicz W and Jones N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engineering, 1984, 2(3): 263-281.
[13] Zhang T G and Yu T X. A note on a ‘velocity sensitive’ energy-absorbing structure[J]. International Journal of Impact Engineering, 1989, 8(1): 43-51.
[14] Campbell J D and Cooper R H. Yield and flow of low-carbon steel at medium strain rates in proc. Conf. on the Physical Basis of Yield and Fracture[C]. Inst. of Physics and Physical Soc., London, 1966: 77-87.
[15] Andrews K R F, England G L and Ghani E. Classification of the axial collapse of cylindrical tubes under quasi
-static loading[J]. International Journal of Mechanical Sciences, 1983, 25(9): 687-696.
PDF(1252 KB)

Accesses

Citation

Detail

Sections
Recommended

/