[1] 黄本才. 结构抗风分析原理及应用[M]. 上海:同济大学出版社, 2008, 51-59.
Huang Ben-cai. The application and principle of structure preventing wind [M].Shanghai: Tongji University Press. 2008, 51-59.
[2] Shi Y, Liu H, Gao L, Zhang G. Cellular particle swarm optimization[J]. Information Sciences, 2011, 181: 4460-4493.
[3] Niknam T. An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective distribution feeder reconfiguration[J]. Energy Conversion and Management, 2009, 50: 2074-2082.
[4] Li Xiao-dong, Yao Xin. Cooperatively coevolving particle swarms for large scale optimization [J]. IEEE Transactions on Evolutionary Computation, 2012, 16(2): 210-224.
[5] Suykens JAK, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing, 1999, 9(3): 293-300.
[6] Dorigo M, Sttzle T. The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances [M]. Kluwer Academic Publishers, 2002.
[7] Zlochin M, Birattari M, Meuleau N, Dorigo M. Model-based search for combinatorial optimization [R]. Technical Report TR/IRIDIA/2001-15.
[8] Kennedy J, Eberhart RC. Swarm Intelligence [M]. Morgan Kaufman Publishers, 2002.
[9] Mahani Amir Saber, Shojaee Saeed, Salajegheh Eysa, Khatibinia Mohsen. Hybridizing two-stage meta-heuristic optimization model with weighted least squares support vector machine for optimal shape of double-arch dams [J]. Applied Soft Computing, 2015, 27: 205-218.
[10] Shi Y, Eberhart RC. A modified particle swarm optimizer, in: Proceedings of IEEE International Conference on Evolutionary Computation[R], IEEE Press, 1998.
[11] 张弦, 王宏力. 基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用[J].中国机械工程,2011,22(21): 2572-2576.
Zhang Xian, Wang Hong-li. The application of least squares support vector machine based on Particle Swarm Optimization in the forecasting of time series[j]. China Mechanical Engineering, 2011, 22(21): 2572-2576.