Parameter design of nonlinear energy sink based on nonlinear output frequency-response functions

Yang Kai1, Zhang Ye-wei1,2, DING Hu1, LI Xiang1,CHEN Li-qun1,3

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (21) : 76-80.

PDF(1407 KB)
PDF(1407 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (21) : 76-80.

Parameter design of nonlinear energy sink based on nonlinear output frequency-response functions

  • Yang Kai1, Zhang Ye-wei1,2, DING Hu1, LI Xiang1,CHEN Li-qun1,3
Author information +
History +

Abstract

The concept of transmissibility based on nonlinear output frequency-response functions (NOFRF) is used to evaluate the vibration isolation performance of a nonlinear energy sink (NES) on a single degree of freedom(SDOF) vibration system in frequency domain for NES parameters design. A SDOF structure with the NES attached system is adopted. Numerical simulations of NOFRFs and frequency responses have been performed for the nonlinear system. Thus, providing a physically meaningful explanation for the phenomena of introducing a NES into a vibration system with barely change of the resonant frequencies of the primary system. Moreover, the effects of NES parameters on the transmissibility of the nonlinear system are evaluated. It was found that by increasing the viscous damping, as well as decreasing the mass and the cubic nonlinear stiffness of the NES, the transmissibility of the SDOF structure with NES is reduced in the resonant frequency for better vibration isolation performance in this case. Therefore, the analysis results achieved in the present study are very important for NES design in engineering practices.
 

Key words

Nonlinear energy sink
/ dynamic parameters design / frequency-response function / frequency domain analysis / cubic nonlinear stiffness
 

Cite this article

Download Citations
Yang Kai1, Zhang Ye-wei1,2, DING Hu1, LI Xiang1,CHEN Li-qun1,3. Parameter design of nonlinear energy sink based on nonlinear output frequency-response functions[J]. Journal of Vibration and Shock, 2016, 35(21): 76-80

References

[1]  张军, 谌勇, 张志谊, 华宏星. 一种整星隔振器的研制[J]. 振动与冲击, 2005, 24(5): 35-39. [Zhang Jun, Chen Yong, Zhang Zhiyi, Hua Hongxing. Design and research of a new type of whole-spacecraft isolator [J]. Journal of Vibration and Shock, 2005, 24(5): 35-39(in Chinese).]
[2]  涂奉臣, 陈照波, 刘旺中, 方勃. 用于整星隔振效果评价的隔振器影响系数指标研究[J]. 振动与冲击, 2011, 30(3): 220-224. [Tu Fengchen, Chen Zhaobo, Liu Wangzhong, Fang Bo. Evaluating indicator of whole-satellite vibration isolation [J]. Journal of Vibration and Shock, 2011, 30(3): 220-224(in Chinese).]
[3]  A. F. Vakakis. Inducing passive nonlinear energy sinks in linear vibrating systems [J], Journal of Vibration and Acoustics, 2011, 123(3): 324–332.
[4]  D.Michael McFarland, Lawrence A. Bergman, Alexander F. Vakakis. Experimental study of nonlinear energy pumping occurring at a single fast frequency [J]. Journal of Non-Linear Mechanics, 2005, 40(6): 891-899.
[5]  张也弛, 孔宪仁, 杨正贤, 张红亮. 非线性吸振器的靶能量传递及参数设计[J]. 振动工程学报, 2011, (04): 111-117. [Zhang Yechi, Kong Xianren, Yang Zhengxian, Zhang Hongliang. Targeted energy transfer and parameter design of a Nonlinear vibration absorber [J]. Journal of Vibration Engineering, 2011, (04): 111-117(in Chinese).]
[6]  徐弈. 基于非线性能量吸振器的结构一维振动抑制分析. 杭州:浙江大学, 2013. [Xu Yi. Analysis on suppression of structural one-dimensional vibration via nonlinear energy sink absorber. Hangzhou: Zhejiang University, 2013(in Chinese).]
[7]  杨凯, 张业伟, 陈立群, 丁虎, 臧健. 基于非线性消振器的空间结构被动振动抑制[J]. 动力学与控制学报, 2014, (03): 259-263. [Yang Kai, Zhang Yewei, Chen Liqun, Ding Hu, Zang Jian. Space structure vibration control based on passive nonlinear energy sink [J]. Journal of Dynamics and Control, 2014, (03): 259-263(in Chinese).]
[8]  陈勇, 徐弈. 基于非线性能量吸振器的高耸结构减振分析[J]. 振动与冲击, 2014, 33(9): 27-32. [Chen Yong, Xu Yi. Vibration suppression analysis for a tall structure attached with a nonlinear energy sink absorber [J]. Journal of Vibration and Shock, 2014, 33(9): 27-32(in Chinese).]
[9]  Z. Q. Lang, S. A. Billings. Energy transfer properties of nonlinear systems in the frequency domain [J], International Journal of Control, 2005, 78: 354-362.
[10]  C. M. Cheng, Z. K. Peng, W. M. Zhang, G. Meng. Analysis of locally nonlinear two dimensional periodic structures using NOFRFs [J], Vibration Engineering and Technology of Machinery, 2015, 23: 811-823.
[11]  C. M. Cheng, Z. K. Peng, X. J. Dong, W. M. Zhang, G. Meng. Locating nonlinear components in two dimensional periodic structures based on NOFRFs [J], International Journal of Nonlinear Mechanics, 2014, 67: 198-208.
[12]  Z. Q. Lang, S. A. Billings. Output frequency characteristics of nonlinear system [J], International Journal of Control, 1996, 64: 1049–1067.
[13]  S. A. Billings, Z. Q. Lang. Non-linear systems in the frequency domain: energy transfer filters [J], International Journal of Control, 2002, 75: 1066-1081.
[14]  G. M. Lee. Estimation of non-linear system parameters using higher-order frequency response functions [J], Mechanical Systems and Signal Processing, 1997, 11: 219-229.
[15]  Z. K. Peng, Z. Q. Lang, S. A. Billings. Resonances and resonant frequencies for a class of nonlinear systems [J], Journal of Sound and Vibration, 2007, 300: 993–1014.
[16]  Z. K. Peng, Z. Q. Lang, S. A. Billings. Crack detection using nonlinear output frequency response functionss [J], Journal of Sound and Vibration, 2007, 301: 777–788.
PDF(1407 KB)

Accesses

Citation

Detail

Sections
Recommended

/