The application of conjugate gradient least squares iteration regularization algorithm in impact load identification

LU Li-qin1,2, QIAO Bai-jie1, ZHANG Xing-wu1, CHEN Xue-feng1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (22) : 176-182.

PDF(1631 KB)
PDF(1631 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (22) : 176-182.

The application of conjugate gradient least squares iteration regularization algorithm in impact load identification

  • LU Li-qin1,2, QIAO Bai-jie1, ZHANG Xing-wu1, CHEN Xue-feng1
Author information +
History +

Abstract

Regularization methods should be developed to overcome the ill-posedness of inverse problem of structural dynamic load identification for a stable solution. The conjugate gradient least squares (CGLS) iterative regularization algorithm has several advantages over direct regularization methods such as Tikhonov method on solving inverse problem: the inversion of matrix is not required; no explicit regularization parameter is required. In this paper, the CGLS iteration regularization algorithm with the heuristic stopping rule is proposed to reconstruct the impact load acting on the three-degrees-of-freedom system and the shell structure, compared to the classical Landweber iteration regularization algorithms and Tikhonov regularization method. Simulation and experiment demonstrates that the CGLS algorithm for impact load identification works better in accuracy, convergence rate, cost time and anti-noise.
 
 

Key words

conjugate gradient least squares algorithm / Landweber algorithm / impact load identification / regularization method

Cite this article

Download Citations
LU Li-qin1,2, QIAO Bai-jie1, ZHANG Xing-wu1, CHEN Xue-feng1. The application of conjugate gradient least squares iteration regularization algorithm in impact load identification[J]. Journal of Vibration and Shock, 2016, 35(22): 176-182

References

[1] 乔百杰, 赵彤, 陈雪峰. 功率流测量以及振动能量参数估计试验研究 [J].振动与冲击,2014, 33(7):194-197.
QIAO Bai-jie, ZHAO Tong, CHEN Xue-feng. Tests for power flow measurement and vibrational energy estimation [J]. Journal of Vibration and Shock, 2014, 33(7):194-197.
[2] Qiao, B. J., Zhao, T., Chen, X. F., et al. The assessment of active vibration isolation performance of rotating machinery using power flow and vibrational energy: experimental investigation [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, DOI: 10.1177/0954406215572434.
[3] 郝扣安, 王振清, 周利民. 不同铺层厚度复合材料的低速冲击特性与损伤模式研究 [J]. 应用数学和力学, 2013, 34(7):661-671.
HAO Kou-an, WANG Zhen-qing, ZHOU Li-min. Impact behaviors and damage modes of composites under low-velocity impact with different layup thicknesses [J], Applied Mathematics and Mechanics, 2013, 34(7): 661-671.
[4] 张磊, 曹跃云, 杨自春, 等. 总体最小二乘正则化算法的载荷识别 [J].振动与冲击,2014, 33(9):159-164.
ZHANG Lei, CAO Yue-yun, YANG Zi-chun, et al. Load identification using CG-TLS regularization algorithm [J]. Journal of Vibration and Shock, 2014, 33(9):159-164.
[5] Li Z, Feng Z P, Chu F L. A load identification method based on wavelet multi-resolution analysis [J]. Journal of Sound and Vibration, 2014, 333(2):381-391.
[6] Qiao B J, Zhang X W, Luo X J, et al. A force identification method using cubic B-spline scaling functions [J]. Journal of Sound and Vibration, 2015, 333: 28-44.
[7] Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse problems [M]. Academic Press, 2013.
[8] Ghajari M, Sharif Khodaei Z, Aliabadi M. Impact detection using artificial neural networks [J]. Key Engineering Materials, 2012, 488: 767-770.
[9] Qiao B J, Chen X F, Xue X F, et al. The application of cubic B-spline collocation method in impact force identification [J], Mechanical Systems and Signal Processing, 2015, 64-65: 413-427.
[10] 王林军. 正则化方法及其在动态载荷识别中的应用 [D]. 博士论文. 长沙:湖南大学, 2011.
WANG Lin-jun. Regularization methods and their applications in Dynamic Load Identification [D], Doctoral dissertation. Chang Sha: Hunan University, 2011.
[11] 常晓通, 闫云聚, 刘鎏. Landweber 迭代正则化方法在动态载荷识别中的应用 [J]. 应用数学和力学, 2013, 34(9): 948-955
CHANG Xiao-tong, YAN Yun-ju, LIU Liu. Applications of Landweber iteration regularization method in dynamic load identification [J], Applied Mathematics and Mechanics, 2013, 34(9): 948-955.
[12] Hanke M. Conjugate gradient type methods for ill-posed problems [M]. CRC Press, 1995.
[13] Rubk T, Meaney P M, Meincke P, et al. Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton's method and the CGLS inversion algorithm [J]. Antennas and Propagation, IEEE Transactions on, 2007, 55(8): 2320-2331.
[14] Huang C H, Wang S P. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method [J]. International Journal of Heat and Mass Transfer, 1999, 42(18): 3387-3403.
[15] Kaltenbacher B, Neubauer A, Scherzer O. Iteration regularization methods for nonlinear ill-posed problems [M]. Walter de Gruyter, 2008.
[16] Qiao B, Chen X, Luo X, et al. A novel method for force identification based on the discrete cosine transform [J]. ASME Journal of Vibration and Acoustics, 2015, 137: 051012.
 
PDF(1631 KB)

976

Accesses

0

Citation

Detail

Sections
Recommended

/