Submerged floating tunnel(SFT) is a new traffic structure across long and deep waterway. The vortex-induced vibration of cables will occur under action of water current. Privious studies were done by using numerical methods, however, experiment is indispensable mean to explore VIV mechanism of cables in water. In this paper, taking cables of Qiandao Lake SFT for prototype, the experiments of VIV on cable were carried out under the action of current by using segment models in stormy stream integrated sink. The results show that inertial force coefficient Cm of circular cable is 0.94, linear fluid damping ratio ξ’ is 1.26%; when the reduced velocity is between 5.8~10.1, the vortex-induced resonance will occur, the maximum lateral amplitude Ay/D is 1.10, the in-line amplitude is still low, and the lift coefficient CL and drag coefficient CD will increase. The parametric analysis concluded that the diagonal arrangement of circular cables will be helpful to reduce the VIV effects and the changing of flow direction will adversely affect vibration of inclined cables.
Key words
Submerged floating tunnel /
Vortex-Induced vibration /
Segment model /
Fluid-Structure Interaction /
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] AHRENS D. Submerged floating tunnels—A concept whose time has arrived [J]. Tunneling and Underground Space Technology, 1997, 12(2): 317-336.
[2] 项贻强, 薛静平. 悬浮隧道在国内外的研究[J]. 中外公路. 2002, 22(6):49-52
Xiang Yiqiang, Xue Jinping. Study on submerged floating tunnels in the world.[J] Journal of China & Foreign highway,2002, 22(6):49-52
[3] 项贻强, 晁春峰. 悬浮隧道管体及锚索耦合作用的涡激动力响应[J]. 浙江大学学报(工学版), 2012, 46(3):409-415
Xiang Yiqiang, Chao Chunfeng. Vortex- induced dynamic response for the combined action of tube and cable of submerged floating tunnel[J]. Journal of Zhejiang University(Engineering Science). 2012, 46(3):409-415
[4] 项贻强, 张科乾. 基于Morison方程分层积分计算悬浮 隧道的波浪力[J]. 浙江大学学报(工学版). 2011, 45(8):1399-1404
Xiang Yiqiang, Zhang keqian. Calculation of Wave Force Acting on Submerged Floating Tunnel. Journal of Zhejiang University(Engineering Science). 2011,45(8):1399-1404
[5] Brancaleoni F,Casteilani A, Dasdia P. The response of Submerged Tunnels to Their Environment[J]. Engineering Structures, 1989, 11(1):47-56
[6] Remsfth S, Ieira B J, Okstad K M, et al. Dynamic Response and Fluid/Structure Interaction of Submerged Floating Tunnels[J]. Computers and Structures, 1999, 72(3):659-685
[7] Kunisu H, Mizuno S,Mizuno Y, et al. Study on Submerged Floating Tunnel Characteristics Under the Wave Condition[C]//ISOPE. Proceedings of the International Offshore and Polar Engineering Conference. Osaka: ISOPE, 1994:27-32
[8] 麦继婷, 罗忠贤, 关宝树. 流作用下悬浮隧道张力腿的涡激动力响应[J]. 西南交通大学学报,2004, 39(5):600-604
[9] 李剑. 水中悬浮隧道概念设计及其关键技术研究[D]. 上海: 同济大学, 2003
[10] 陈健云, 孙胜男, 苏志彬. 水流作用下悬浮隧道锚索的动力响应[J]. 工程力学. 2008, 25(10):229-234
[11] Terje Hauka’s; Svein Remseth. Global dynamic analysis of floating submerged tunnels preliminary study[R]. Department of Structural Engineering. Norwegian University of Science and Technology, 1997
[12] 钱若军, 董石麟, 袁行飞. 流固耦合研究进展[J]. 空间结构. 2008, 14(1):3-15
[13] 晁春峰. 悬浮隧道流固耦合动力响应分析及试验研究[D]. 浙江: 浙江大学, 2013
[14] 宋吉宁. 立管涡激振动的实验研究与离散涡法数值模拟[D]. 大连: 大连理工大学, 2012
[15] Jauvtis N., Williamson C H K. Vortex-induced vibration of a cylinder with two degrees of freedom [J]. Journal of Fluids and Structures. 2003, 17 (7): 1035-1042
[16] Jauvtis N., Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechanics. 2004, 509: 23-62
[17] Robert D. Blevins, Charles S. Coughran. Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and reynolds number[J]. Journal of Fluids Engineering. 2009, 131: 1-7
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}