A test rig of the flow-induced noise based on passive four terminal network method of the centrifugal pump was built to collect sound signals in various operating conditions including different flowrates and cavitating status. The sound pressure level initially decreases when the flow rate is greater than 0.6Qd, reaches the minimum between Qd and 1.2Qd, and then subsequently increases with increasing flow rate. As the cavitation coefficient is reduced, the overall sound pressure level of flow-induced noise is gradually increased, and decreased after reaching a maximum. An optimum value as 15% of the impeller radius has been found between impeller and volute tongue in order to reach a minium sound level. Cutting the impeller diameter could significantly reduce the noise levels especially at the pump outlet and improve the cavitation performance of the model pump when the gap is less than the optimum.
Key words
centrifugal pumps /
flow-induced noise /
performance /
cavitation /
impeller-tongue gap
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Johann F G.Centrifugal Pumps[M].New York:Springer Berlin Heidelberg,2008.
[2] 蒋爱华,张志谊,章艺,等.离心泵噪声研究的综述和展望[J].振动与冲击,2011,3(2):77-84.
JIANG Ai-hua, ZHANG Zhi-yi, ZHANG Yi, et al. Review and outlook of studying on noise of centrifugal pumps[J]. Journal of Vibration and Shock, 2011, 3(2): 77-84.
[3] Simpson H C,Clark T A,Weir G A.A theoretical investigation of hydraulic noise in pumps[J].Journal of Sound and Vibration,1967:456-488.
[4] Rzentkowski G,Zbroja S.Experimental characterization of centrifugal pumps as an acoustic source at the blade-passing frequency[J].Journal of Fluids and Structures,2000,14:529-558.
[5] Bernd D,Wurm F H.Noise sources in centrifugal pumps[C].Proceedings of the 2nd WSEAS Int.Conference on Applied and Theoretical Mechanics,Venice,Italy,20th-22th November,2006,pp:203-207.
[6] Qiaorui Si,Shouqi Yuan,Jianping Yuan,et al.Investigation on flow-induced noise due to backflow in low specific speed centrifugal pumps[J].Advances in Mechanical Engineering,2013,109048.
[7] 蒋爱华,李国平,周璞,等.离心泵流体激励力诱发振动:蜗壳与叶轮途径[J].振动与冲击,2014,33(10):1-7.
JIANG Ai-hua, LI Guo-ping, ZHOU Pu, et al. Vibration incited by fluid florces on centrifugal pump from volute path and impeller path[J]. Journal of Vibration and Shock, 2014, 33(10): 1-7.
[8] Chu S,Dong R,Katz J.Relationship between unsteady flow,pressure fluctuations,and noise in a centrifugal pump,Part A:Use of PDV data to compute the pressure field[J].ASME Journal of Fluids Engineering,1995,117:24-29.
[9] Chu S,Dong R,Katz J.Relationship between unsteady flow,pressure fluctuations,and noise in a centrifugal pump,Part B:effects of blade-tongue interaction[J].ASME Journal of Fluids Engineering,1995,117:30-35.
[10] Srivastav O P,Pandu K R,Gupta K.Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump[J].Journal of the Institution of Engineers (India):Mechanical Engineering Division,2003,84:36-39.
[11] 冯涛.离心泵流动噪声的测量研究[D].北京:中国科学院声学研究所,2005.
[12] 潘中永,袁寿其.泵空化基础[M].镇江:江苏大学出版社,2013.
[13] Brennen C E.Hydrodynamics of Pumps [M].New York:Oxford University Press,1994.
[14] 段向阳,王永生,苏永生,等.基于声压测量的离心泵空化监测[J].兵工学报,2010,31(9):1268-1273.
DUAN Xiang-yang, WANG Yong-sheng, SU Yong-sheng, et al. Cavitation monitoring in centrifugal pump based on sound pressure measurement[J]. Acta Armamentarii, 2010, 31(9): 1268-1273.
[15] 段向阳,王永生,苏永生.振动分析在离心泵空化监测中的应用[J].振动与冲击,2011,30(4):161-165.
DUAN Xiang-yang, WANG Yong-sheng, SU Yong-sheng. Vibration analysis applied in cavitation monitoring of a centrifugal pump[J]. Journal of Vibration and Shock, 2011, 30(4): 161-165.
[16] 关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
[17] GB/T3216-2005.回转动力泵水力性能验收试验[S].北京:中国标准出版社,2005.
[18] 黄景泉,龚光寅,武延祥,等.空化噪声的实验研究[J].水动力学研究与进展,1988,3(4):8-15.
HUANG Jing-chuan, XI Guang-yin, WU Yan-xiang, et al. Experimental investigations of cavitation noise[J]. Advances in Hydrodynamics, 1988, 3(4): 8-15.
[19] Chudina M.Noise as an indicator of cavitation in a centrifugal pump[J].Acoustical Physics,2003,49(4):463-474.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}