Study on failure mode of hydropower house superstructure under rare earthquake action

HAO Jungang1, HU Lei2, WU Hegao1, FU Dan1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (3) : 55-61.

PDF(2425 KB)
PDF(2425 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (3) : 55-61.

Study on failure mode of hydropower house superstructure under rare earthquake action

  • HAO Jungang1, HU Lei2, WU Hegao1, FU Dan1
Author information +
History +

Abstract

 To reveal failure mode and seismic safety margin of hydropower house under rare earthquake action, concrete damage plastic (CDP) model was used to describe concrete material and viscous-spring artificial boundary was used to simulate infinite foundation. The peak acceleration of artificial seismic wave is 0.331g corresponding to rare earthquake action. The dynamic nonlinear time-history analysis was carried out aiming at a practical hydropower house structure. The results show that, the failure modes of hydropower house under rare earthquake action are severe cracks in downstream columns, slight cracks in upstream columns, wall and compressive damage in downstream columns. The concrete damage status, reinforcement stress and story drift angle indicate that the powerhouse has high safe capacity and the overall destruction is at the level of “repairable”. However, because of upstream and downstream walls’ inconsistent motion, the dynamic stress of roof net is very high and there exists risk of collapse. So the connection mode between roof net and upstream and downstream walls should be paid more attention in aseismic design of hydropower house.

Key words

 hydraulic structure / hydropower house / rare earthquake / failure mode / concrete plastic model / roof net

Cite this article

Download Citations
HAO Jungang1, HU Lei2, WU Hegao1, FU Dan1. Study on failure mode of hydropower house superstructure under rare earthquake action[J]. Journal of Vibration and Shock, 2016, 35(3): 55-61

References

[1] 马震岳, 宋志强, 陈婧, 等. 小湾水电站地下厂房动力特性及抗震分析 [ J ]. 水电能源科学, 2007, 25(6): 72-74.
MA Zhenyue, SONG Zhiqiang, CHEN Jing, et al. Dynamic characteristic and anti-seismic analysis of underground powerhouse of Xiaowan Hydropower Station [J]. Water Resources and Power, 2007, 25(6):72-74.
[2] 张辉东, 王日宣, 王元丰. 大型水电站厂房结构地震时程响应非线性数值模拟 [ J ]. 水力发电学报, 2007, 26(4): 96-102.
ZHANG Huidong, WANG Rixuan, WANG Yuanfeng. Seismic time history and non-linear numerical simulation of large-scale powerhouse structure [J]. Journal of Hydroelectric Engineering, 2007, 26(4): 96-102.
[3] 王海军, 练继建, 王日宣. 水电站厂房结构地震响应非线性分析 [ J ]. 水电能源科学, 2008, 26(3): 88-91.
WANG Haijun, LIAN Jijian, WANG Rixuan. Seismic response nonlinear analysis of hydropower house structure [J]. Water Resources and Power, 2008, 26(3): 88-91.
[4] 欧阳金惠, 陈厚群, 张超然, 等. 三峡电站15#机组厂房结构动力分析 [ J ]. 中国水利水电科学研究院学报, 2007, 5(2): 137-142.
OUYANG Jinhui, CHEN Houqun, ZHANG Chaoran, et al. Dynamic response analysis on No.15 unit powerhouse structure in the Three Gorges Hydropower Station [J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(2): 137-142.
[5] DL 5073-2000 水工建筑物抗震设计规范 [ S ]. 北京: 中国电力出版社, 2000.
DL 5073-2000 Specifications for seismic design of hydraulic structures [ S]. Beijing :China Electric Power Press, 2000.
[6] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete [ J ]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
[7] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [ J ]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[8] 李德玉, 陈厚群. 混凝土动态弹性模量对重力坝地震反应的影响分析 [ J ]. 中国水利水电科学研究院学报, 2012, 10(2): 81-85.
LI Deyu, CHEN Houqun. The study on the seismic response of gravity dam due to changing of dynamic concrete modulus of elasticity [J]. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(2): 81-85.
[9] GB 50010-2010 混凝土结构设计规范 [ S ]. 北京: 中国建筑工业出版社, 2010.
GB 50010-2010 Code for design of concrete structures [ S]. Beijing :China Architecture & Building Press, 2010.
[10] 吴健, 金峰, 张楚汉, 等. 无限地基辐射阻尼对溪洛渡拱坝地震响应的影响 [ J ]. 岩土工程学报, 2002, 24(6): 716-719.
WU Jian, JIN Feng, ZHANG Chuhan, et al. Effects of radiation damping of infinite foundation on Seismic response of the Xiluodu arch dam [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 716-719.
[11] 陈厚群. 坝址地震动输入机制探讨 [ J ]. 水利学报, 2006, 37(12): 1417-1423.
CHEN Houqun. Discussion on seismic input mechanism at dam site [J]. Journal of Hydraulic Engineering, 2006, 37(12): 1417-1423.
[12] 谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元 [ J ]. 工程力学, 2007, 24(12): 31-37.
GU Yin, LIU Jingbo, DU Yixin. 3D consistent viscous-spring artificial boundary and viscous-spring boundary element [J]. Engineering Mechanics, 2007, 24(12): 31-37.
[13] 杜修力, 赵密. 基于黏弹性边界的拱坝地震反应分析方法 [ J ]. 水利学报, 2006, 37(9):1063-1069.
DU Xiuli, ZHAO Mi. Analysis method for Seismic response of arch dams in time domain based on viscous-spring artificial boundary condition [J]. Journal of Hydraulic Engineering, 2006, 37(9):1063-1069.
[14] GB 50011-2010 建筑抗震设计规范 [ S ]. 北京: 中国建筑工业出版社, 2010.
GB 50011-2010 Code for seismic design of buildings [ S]. Beijing :China Architecture & Building Press, 2010.
PDF(2425 KB)

649

Accesses

0

Citation

Detail

Sections
Recommended

/