[1] Jajam K C, Tippur H V. Role of inclusion stiffness and interfacial strength on dynamic matrix crack growth: An experimental study[J]. International Journal of Solids and Structures. 2012, 49: 1127-1146.
[2] Lipetzky P, Knesl Z. Crack-particle interaction in a two-phase composite Part II: crack deflection[J]. International journal of fracture. 1995, 73(1): 81-92.
[3] Lipetzky P, Schmauder S. Crack-particle interaction in two-phase composites Part I: Particle shape effects[J]. International journal of fracture. 1994, 65(4): 345-358.
[4] Williams R C, Phan A V, Tippur H V, et al. SGBEM analysis of crack–particle (s) interactions due to elastic constants mismatch[J]. Engineering fracture mechanics. 2007, 74(3): 314-331.
[5] Lei J, Wang Y S, Huang Y, et al. Dynamic crack propagation in matrix involving inclusions by a time-domain BEM[J]. Engineering Analysis with Boundary Elements. 2012, 36(5): 651-657.
[6] Lei J, Yang Q, Wang Y S, et al. An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM[J]. Composites Science and Technology. 2009, 69(7): 1279-1285.
[7] Lei J, Zhang C, Yang Q, et al. Dynamic effects of inclusions and microcracks on a main crack[J]. International Journal of Fracture. 2010, 164(2): 271-283.
[8] Song C, Wolf J P. The scaled boundary finite-element method--alias consistent infinitesimal finite-element cell method--for elastodynamics[J]. Computer Methods in applied mechanics and engineering. 1997, 147(3-4): 329-355.
[9] Song C M, Wolf J P. Body loads in scaled boundary finite-element method[J]. Computer Methods in Applied Mechanics and Engineering. 1999, 180(1-2): 117-135.
[10] Song C W J. The scaled boundary finite-element
method for anisotropic multimaterial plate with crack.[Z]. Palaiseau, France: 1998.
[11] Song C. Analysis of singular stress fields at multi‐material corners under thermal loading[J]. International journal for numerical methods in engineering. 2006, 65(5): 620-652.
[12] Yang Z J, Deeks A J, Hao H. Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach[J]. Engineering fracture mechanics. 2007, 74(5): 669-687.
[13] Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method[J]. Engineering Fracture Mechanics. 2006, 73(12): 1711-1731.
[14] Yang Z J, Deeks A J. Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method[J]. International Journal of Fracture. 2007, 143(4): 333-354.
[15] Ooi E T, Yang Z J. Modelling dynamic crack propagation using the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering. 2011, 88(4): 329-349.
[16] Ooi E T, Song C, Tin Loi F, et al. Polygon scaled boundary finite elements for crack propagation modelling[J]. International Journal for Numerical Methods in Engineering. 2012, 91(3): 319-342.
[17] Song C, Tin-Loi F, Gao W. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges[J]. Engineering Fracture Mechanics. 2010, 77(12): 2316-2336.
[18] Ooi E T, Mingguang S, Song C, et al. Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique[J]. Engineering Fracture Mechanics. 2013, 106: 1-21.
[19] Fedelinski P, Aliabadi M H, Rooke D P. The time-domain DBEM for rapidly growing cracks[J]. International Journal for Numerical Methods in Engineering. 1997, 40(9): 1555-1572.
[20] Nishioka T. Computational dynamic fracture mechanics[J]. International Journal of Fracture. 1997, 86(1): 127-159.