Nonlinear free vibration of drive system for an electromechanical integrated harmonic piezoelectric motor

LI Chong,XU Li-zhong,GAO Li-chao

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (6) : 7-12.

PDF(2183 KB)
PDF(2183 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (6) : 7-12.

Nonlinear free vibration of drive system for an electromechanical integrated harmonic piezoelectric motor

  • LI Chong,XU Li-zhong,GAO Li-chao
Author information +
History +

Abstract

An electromechanical integrated harmonic piezoelectric motor which integrates piezoelectric driving, harmonic drive and movable tooth drive is designed and the principle of the motor is discussed. Using the theory of planetary gear transmission for reference, the dynamic models of drive system are set up. Utilizing Linz Ted-Poincaré method, the equations of frequency characteristic and displacement response are deduced. Then, the law of frequency variation and the characteristic of time response are analyzed. Finally, the ANSYS finite element software is applied to verify the frequencies. Results show, the nonlinear of the drive system is caused by the changing of meshing teeth number, and the fewer the meshing teeth number, the more obvious the nonlinear phenomenon of the drive system. In the displacement response, the x and u direction of harmonic generator are the most and the least affected by nonlinear phenomenon. Finite element simulation verifies the correctness of the dynamic model.
 

Key words

harmonic piezoelectric motor / drive system / nonlinear / free vibration / Linz Ted-Poincaré / method

Cite this article

Download Citations
LI Chong,XU Li-zhong,GAO Li-chao. Nonlinear free vibration of drive system for an electromechanical integrated harmonic piezoelectric motor[J]. Journal of Vibration and Shock, 2016, 35(6): 7-12

References

[1] Liu Xiu-juan, Zhou Ke-chao, Zhang Xiao-yong, et al. Development, modeling and application of piezoelectric fiber composites[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2013, 23(1): 98-107.
[2] Shigeki T. Spherical ultrasonic motor for pipe inspection robot[J]. Applied Mechanics and Materials, 2012, 186: 3-11.
[3] Jeong S, Cheon S, Park J, et al. Design and fabrication of three touch point thin ultrasonic rotary motor[J]. Ferroelectrics, 2014, 459(1): 143-152.
[4] 沈大雷. 南航助“嫦娥”完美登月[N]. 中国教育报, 2013-12-18(8).
[5] 邢继春,许立忠,梁永丽. 旋转式惯性压电电机的振子模型研究[J]. 振动与冲击,2010, 29(11): 105-109.
XING Ji-chun, XU Li-zhong, LIANG Yong-li. A vibrator model for a piezoelectric motor with rotary inertia[J]. Journal of Vibration and Shock, 2010, 29(11): 105-109.
[6] 季叶,赵淳生. 一种具有高转速的新型非接触式超声电机[J]. 压电与声光, 2006, 28(5): 527-529.
JI Ye, ZHAO Chun-sheng. A new type non-contact ultrasonic motor with higher revolution speed[J]. Piezoelectrics & Acoustooptics, 2006, 28(5): 527-529.
[7] Oliver B. Harmonic piezodrive-miniaturized servo motor[J]. Mechatronics, 2000, 10(4): 545-554.
[8] 辛洪兵,郑伟智. 压电谐波电机的研究[J]. 压电与声光, 2004, 26(2): 122-125.
XIN Hong-bing, ZHENG Wei-zhi. Study on harmonic piezomotor[J]. Piezoelectrics & Acoustooptics, 2004, 26(2): 122-125.
[9] 王长明,阳培,张立勇. 谐波齿轮传动概述[J]. 机械传动, 2006, 30(4): 86-88.
WANG Chang-ming, YANG Pei, ZHANG Li-yong. Summary of status on the harmonic gear driving technology[J]. Journal of Mechanical Transmission, 2006, 30(4): 86-88.
[10] Li Chong, Xing Ji-chun, Xu Li-zhong. Coupled vibration of driving sections for an electromechanical integrated harmonic piezodrive system[J]. AIP Advances, 2014, 4(3): 031320.
[11] 梁尚明,张均富,徐礼钜,等. 摆动活齿传动系统振动的动力学模型[J]. 振动工程学报, 2003, 16(3): 285-289.
LIANG Shang-ming, ZHANG Jun-fu, XU Li-ju, et al. Dynamic model of swing movable teeth transmission system vibration[J]. Journal of Vibration Engineering, 2003, 16(3): 285-289.
[12] 张鹏,安子军. 摆线钢球行星传动动力学建模与固有特性分析[J]. 中国机械工程, 2014, 25(2): 157-162.
ZHANG Peng, AN Zi-jun. Dynamics model and natural characteristics of cyloid ball planetary transmission[J]. China Mechanical Engineering, 2014, 25(2): 157-162.
[13] 安子军,张鹏,杨作梅. 摆线钢球行星传动系统参数振动特性研究[J]. 工程力学, 2012, 29(3): 244-251.
AN Zi-jun, ZHANG Peng, YANG Zuo-mei. Research on properties for parametric vibration of cycloid ball planetary transmission system[J]. Engineering Mechanics, 2012, 29(3): 244-251.
PDF(2183 KB)

588

Accesses

0

Citation

Detail

Sections
Recommended

/