Low noise optimization design of plastic oil cooler cover based on the liquid-solid coupling method and multi-objective topological optimization

Zhang Jun-hong1,2, Guo Qian1, Wang Jian1, Chen Kong-wu1, Ma Liang1,2

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (7) : 186-191.

PDF(2042 KB)
PDF(2042 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (7) : 186-191.

Low noise optimization design of plastic oil cooler cover based on the liquid-solid coupling method and multi-objective topological optimization

  • Zhang Jun-hong1,2, Guo Qian1, Wang Jian1, Chen Kong-wu1, Ma Liang1,2
Author information +
History +

Abstract

It has been proved that oil cooler cover is a main source of surface radiated noise for engine. And the existence of cooling liquid has a great influence on the vibration of oil cooler cover. Taking the fluid pressure as pre-stress and using the liquid-solid coupling method, a liquid-solid coupled model is established and used to predict the vibration and radiated noise of plastic oil cooler cover firstly. According to the prediction results, the main coupling modal frequencies that have great contribution to the radiated noise of the plastic oil cooler cover are identified. Then the multi-objective optimization is applied to structure topography optimization using the exponential weighted method. Compared with the initial plastic oil cooler cover, it has a higher performance: the overall noise is reduced 1.79 dB.
 

Key words

plastic oil cooler cover / liquid-solid coupling / multi-objective topography optimization / exponential weighted method

Cite this article

Download Citations
Zhang Jun-hong1,2, Guo Qian1, Wang Jian1, Chen Kong-wu1, Ma Liang1,2. Low noise optimization design of plastic oil cooler cover based on the liquid-solid coupling method and multi-objective topological optimization[J]. Journal of Vibration and Shock, 2016, 35(7): 186-191

References

[1] Klaus G. Vehicle Interior Noise-combination of Sound, Vibration and Interactivity[J]. Sound and Vibration, 2009, 43(12): 8-13.
[2] 弯艳玲, 李守魁, 李元宝. 某型轿车加速行驶车外噪声控制方法[J]. 振动、测试与诊断, 2012, 32(5): 850-853.
WAN Yan-ling, LI Shou-kui, LI Yuan-bao. Control method of reducing pass-by noise emitted by accelerating certain of motor vehicles[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(5): 850-853.
[3] 贾继德, 王元龙, 李金学. 客车车外噪声源识别及整车降噪研究[J]. 振动与冲击, 2008, 27(3): 161-164.
JIA Ji-de, WANG Yuan-long, LI Jin-xue. Noise source identification and noise control of the bus[J]. Journal of Vibration and Shock, 2008, 27(3): 161-164.
[4] 朱孟华. 内燃机振动与噪声控制[M]. 北京: 国防工业出版社, 1995.
[5] 钱人一. 车用发动机噪声控制[M]. 上海: 同济大学出版社, 1997.
[6] 贺岩松, 黄  勇, 徐中明, 等. 发动机边盖透射与辐射噪声识别研究[J]. 振动与冲击, 2013, 32(22): 174-177.
HE Yan-song, HUANG Yong, XU Zhong-ming, et al. Identification of transmission and radiation noise of an engine side cover[J]. Journal of Vibration and Shock, 2013, 32(22): 174-177.
[7] 李京鲁. 机油冷却器盖振动响应分析[Z]. 中国内燃机学会2005年内燃机联合学术年会, 银川, 2005.
[8] Haran P, Mike E A, David A N. Design of 5.4L 3V Thermoplastic Composite Engine Cover for NVH Improvement[C]. SAE International, 2009-01-0602.
[9] Abdelkrim Z, Thomsa S, Frank V, et al. NVH Development of Lightweight Polymer Engines Oil Pans for Gasoline[C]. SAE International, 2009-01-2060.
[10] Cristiana D, Fabio P, Carlo R. A Proposal of an Oil Pan Optimization Methodology[C]. SAE International, 2010-01-0417.
[11] 刘胜吉, 严清梅, 束铭宇, 等. 柴油机气门室罩的声辐射分析[J]. 内燃机学报, 2007, 25(2): 177-181.
LIU Sheng-ji, YAN Qing-mei, SHU Ming-yu, et al. Sound Radiation of Valve Covers in Diesel Engine. Transactions of CSICE, 2007, 25(2): 177-181.
[12] 舒歌群, 刘俊栋, 李  民, 等. 基于HyperWorks的柴油机油底壳有限元建模和结构优化[J]. 小型内燃机与摩托车, 2008, 37(1):25-27.
SHU Ge-qun, LIU Jun-dong, LI Min, et al. Building FEM Model and Structural Optimization for Oil Pan on HyperWorks[J]. Small Internal Combustion Engine and Motorcycle, 2008, 37(1): 25-27.
[13] 贾维新, 郝志勇, 杨金才. 基于形貌优化的低噪声油底壳设计研究[J]. 浙江大学学报(工学版), 2007, 41(5), 770-773.
JIA Wei-xin, HAO Zhi-yong, YANG Jin-cai. Low noise design of oil panbased on topography optimization[J]. Journal of Zhejiang University( Engineering Science),2007, 41(5): 770-773.
[14] 张  亮, 袁兆成, 黄  震. 流固耦合有限元法用于油底壳模态计算[J]. 振动与冲击, 2003, 22(4): 100-102.
ZHANG Liang, YUAN Zhao-chen, HUANG Zhen. Fluid-Structure Coupled Applied in Oil Pan’s Mode Calculation. Journal of Vibration and Shock, 2003, 22(4): 100-102.
[15] 冯  威, 袁兆成, 刘伟哲. 机油参数对液固耦合油底壳辐射声场的影响[J]. 振动与冲击, 2006, 25(1): 150-152.
FENG Wei, YUAN Zhao-chen, LIU Wei-zhe. Influence of oil parameters on the radiant acoustic field of liquid-solid coupled oil pan[J]. Journal of Vibration and Shock, 2006, 25(1): 150-152.
[16] Guido C, Pierluigi C, Fabio M, et al. Exponential weighted method and a compromise programming method for multi-objective operation of plug-in vehicle aggregators in microgrids. Electrical Power and Energy Systems. 2014, 56(1): 374-384.
PDF(2042 KB)

610

Accesses

0

Citation

Detail

Sections
Recommended

/