A calculation method of flexural vibration frequency for conical horn

YAN Ri-ming1, LIU De-fu1,2, CHEN Tao1, SHE Yi-xi1

Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (7) : 198-204.

PDF(1046 KB)
PDF(1046 KB)
Journal of Vibration and Shock ›› 2016, Vol. 35 ›› Issue (7) : 198-204.

A calculation method of flexural vibration frequency for conical horn

  • YAN Ri-ming1, LIU De-fu1,2, CHEN Tao1, SHE Yi-xi1
Author information +
History +

Abstract

A method for the calculation of the flexural vibration frequency for conical horn is presented. Firstly, the initial flexural frequency values ignoring the effects of shear deformation and moment of inertia can be obtained based on the Euler-Bernoulli bar theory, and then the flexural vibration frequency is corrected including both of the effects. The FEM and the modal test show that the results obtained from the computing method agree the experimental results very well within 5% error. Besides, actively design of flexural vibration horn is achieved through the program based on the novel method.

Key words

conical horn / ultrasonic flexural vibration / natural frequency

Cite this article

Download Citations
YAN Ri-ming1, LIU De-fu1,2, CHEN Tao1, SHE Yi-xi1. A calculation method of flexural vibration frequency for conical horn[J]. Journal of Vibration and Shock, 2016, 35(7): 198-204

References

[1] 张雄,焦锋. 超声加工技术的应用及其发展趋势[J]. 工具技术,2012,01:3-8.
Zhang Xiong, Jiao Feng. Applications and Development Trends of Ultrasonic Machining Technology[J]. Tool Technology,2012,01:3-8.
[2] Xu W, Lu X, Pan G, et al. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate[J]. Applied Surface Science, 2010, 256(12): 3936-3940.
[3] Suzuki N, Masuda S, Haritani M, et al. Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting[C], Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004. Proceedings of the 2004 International Symposium on. IEEE, 2004: 133-138.
[4] Li X, Zhang D. Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting[J]. Journal of materials processing technology, 2006, 180(1): 91-95.
[5] 林书玉. 超声换能器的原理与设计[M]. 科学出版社, 2004.
Lin Shuyu. The principle and design of ultrasonic transducer [M].Science Press Ltd, 2004.
[6] 潘巧生,刘永斌,贺良国,潘成亮,邓知森. 一种大振幅超声变幅杆设计[J]. 振动与冲击,2014,09:1-5+20.
Pan Qiao-sheng, LIU Yong-bin, HE Liang-guo, PAN Cheng-liang, DENG Zhi-sen. Design of an ultrasonic horn with high amplitude of  longitudinal vibration[J]. Journal of Vibration And Shock, 2014, 09: 1-5+20.
[7] S.Timoshenko. Vibration Problems in Engineering (2nd edition)[M], D. Van Nostrand Company, Inc. New York, 1937
[8] Watanabe Y, Tsuda Y, Mori E. A longitudinal-flexural complex-mode ultrasonic high-power transducer system with one-dimensional construction[J]. Japanese journal of applied physics, 1993, 32(5S): 2430.
[9] 崔灿,李映辉. 变截面铁木辛柯梁振动特性快速计算方法[J]. 动力学与控制学报,2012,03:258-262.
CUI Can, LI Ying-hui, Semi-analytical method for calculating vibration characteristics of variable cross-section beam, Journal of Vibration and Shock, 31(14):85-88
[10] Zhou Guangping, Li Mingxuan, A study on ultrasonic solid horns for flexural mode. Journal of Acoustical Society of American, 2000; 107(3):1358-1362
[11] 曹凤国.超声加工[M]. 化学工业出版社, 2013.
Cao Fengguo. Ultrasonic Machining[M]. Chemical Industry Press, 2013.
[12] Kamke E. Handbook of ordinary differential equations[M]. Chelsea Publ, 1976.
[13] 奚定平.贝塞尔函数[M]. 高等教育出版社. 1998.
Xi Dingping. Bessel function[M]. Higher Education Press. 1998
[14] 邢誉峰,李敏. 计算固体力学原理与方法[M]. 北京航空航天大学出版社. 2011.4.
Xing Yufeng, Li Min. The Principle and Method of Calculation Solid Mechanics[M]. Beihang University Press. 2011.4.
[15] 方同, 薛璞. 振动理论及应用[M], 西北工业大学出版社. 1998, 6(6): 6.
Fang Tong, Xue Pu. Vibration theory and applications[M], Northwestern Polytechnical University Press. 1998, 6(6): 6.
PDF(1046 KB)

Accesses

Citation

Detail

Sections
Recommended

/